AMEYA360报道:不要盲目依靠工具选择元器件
小型化一直是多层陶瓷片式电容器(MLCC)产品的热门趋势。但缩小尺寸并非易事,特别是需要考虑到许多临界条件。虽然数字工具可以为用户提供很多的协助,但如果用户完全依赖这些工具,住往会忽略一些关键的技术问题。多层陶瓷片式电容器(MLCC)的体积很小,有利于实现小型化。然而,考虑ESD保护、EM干扰和热管理等因素,以及与这些因素相关的典型特性和漂移,也是很重要的。虽然越来越多的开发人员使用数字工具来简化选择元器件的过程,但仍然需要考虑到上述各个方面,才能够快速实现设计目标并避免不必要的重复设计。
首先,建议用户在缩小尺寸时,不要简单地沿用MLCC的现值组合,尤其是在电容(C值)和电压方面,而是要根据应用的实际需求甚至单个元器件的功能来做出决定。理想情况下,应当考虑供应商的首选型款。除了C值和电压外,其他的重要数值还包括阻抗和等效串联电阻(ESR)。
特别是对于高电容(hi-cap)器件,即C值以μF为单位的MLCC产品,其直流偏置效应也是需要考虑的重要因素。直流偏置是基于施加的直流电压而导致电容降低的效应。在额定电压下,电容有可能下降到标称值的20%左右,具体数值取决于元器件,因此在操作期间必须注意绝对最小C值。老化现象会导致MLCC的电容值随着时间的推移而损失,在每个对数尺度差距(per logarithmic decade)下的损失大约在1%到6%之间,这意味着我们可以按此估算1小时后、10小时后、100小时后的电容数值损失,依此类推。因此,MLCC的C值越高且内层越薄,MLCC就越容易老化。也就是说,与直流偏置和温度漂移的影响相比,老化基本上是可以忽略不计的因素,尽管它在测量用于容差测试的C值时发挥关键作用。
与生物的老化不同,MLCC器件的老化是可逆转的。适当的加热处理可以逆转老化效应。为了实现去老化,MLCC元器件通常会放置在+150°C温度下1小时,然后静置24小时。电焊操作也可以去老化。
从整体来看各种C值漂移,很明显应该提倡使用标称容差范围为±10%的二类电容器,而不是标准容差范围为±5%的,即使一些供应商仍然提供和交付标准容差范围为±5%的电容产品。这会引起对于是否遵守容差范围的无意义辩论。在测量过程中,用户经常无法满足有关测量设备和测量条件的要求。例如测量电压(通常定义为1.0 V的有效值)在测量过程中出现下降,从而导致显示的电容值过低。
页:
[1]