• 设为首页
  • 收藏本站
  • 手机版
  • 微博
  • 微信
    微信公众号 添加方式:
    1:搜索微信号(888888
    2:扫描左侧二维码
  • 快捷导航
    查看: 1203|回复: 2

    [移动软件开发] 轻量级部署,腾讯优图开源深度学习推理框架TNN

    [复制链接]

    该用户从未签到

    5

    主题

    1411

    回帖

    2656

    积分

    二级逆天

    积分
    2656

    终身成就奖特殊贡献奖优秀斑竹奖

    发表于 2020-6-27 21:41:45 | 显示全部楼层 |阅读模式
    从学界到工业界,“开源”已经成为AI领域的一个关键词。一方面,它以“授人以渔”的方式为AI构建了一个开放共进的生态环境,帮助行业加速AI应用落地;另一方面,在解决行业实际问题时持续更新和迭代,源源不断地给AI领域输送重要的技术养料和创造力,可以说开源是AI落地和繁荣不可或缺的源动力。

    6月10日,腾讯优图实验室宣布正式开源新一代移动端深度学习推理框架TNN,通过底层技术优化实现在多个不同平台的轻量部署落地,性能优异、简单易用。基于TNN,开发者能够轻松将深度学习算法移植到手机端高效的执行,开发出人工智能 APP,真正将 AI 带到指尖。

    轻量级部署,TNN助力深度学习提速增效

    深度学习对算力的巨大需求一直制约着其更广泛的落地,尤其是在移动端,由于手机处理器性能弱、算力无法多机拓展、运算耗时长等因素常常导致发热和高功耗,直接影响到app等应用的用户体验。腾讯优图基于自身在深度学习方面的技术积累,并借鉴业内主流框架优点,推出了针对手机端的高性能、轻量级移动端推理框架TNN。

    低精度计算的运用对TNN的性能提升发挥了重要作用。在神经网络计算中,浮点精度在许多研究和业务落地成果上都被证明存在一定冗余,而在计算、内存资源都极为紧张的移动端,消除这部分冗余极为必要。TNN引入了INT8、 FP16、 BFP16等多种计算低精度的支持,相比大部分仅提供INT8支持的框架,不仅能灵活适配不同场景,还让计算性能大大提升。TNN通过采用8bit整数代替float进行计算和存储,模型尺寸和内存消耗均减少至1/4,在计算性能上提升50%以上。同时引入arm平台BFP16的支持,相比浮点模型,BFP16使模型尺寸、内存消耗减少50%,在中低端机上的性能也提升约20%。

    随着以开源为代表的新代码文化的兴起,腾讯近年来在开源领域表现亮眼:在全球最大的代码托管平台GitHub上,腾讯发布的开源项目已经超过一百个,涵盖云原生、大数据、AI、云计算、安全、硬件等多个热门的技术方向。

    通过开源协同,腾讯将各个事业群最底层和共性的技术能力进行梳理和拉通,在业务实践和海量用户检验下,优质的内部开源项目不仅在公司层面推广复用,同时也对外贡献整个开源社区。仅在Github上,腾讯的开源项目就收获了30w+star数,跻身国际上有影响力的开源企业之一。

    在开源的道路上,腾讯不仅将内部优质项目持续对外开放,也积极与开源社区协同合作,发挥中国企业的科技力量,推动开源和开放进一步升级。
    回复

    使用道具 举报

    该用户从未签到

    13

    主题

    1111

    回帖

    2687

    积分

    二级逆天

    积分
    2687

    社区居民终身成就奖

    QQ
    发表于 2020-6-28 08:08:37 | 显示全部楼层
    回复

    使用道具 举报

  • TA的每日心情
    奋斗
    4 天前
  • 签到天数: 64 天

    [LV.6]常住居民II

    60

    主题

    1万

    回帖

    8345

    积分

    二级逆天

    积分
    8345

    终身成就奖特殊贡献奖原创先锋奖社区居民灌水天才奖优秀斑竹奖宣传大使奖忠实会员最爱沙发社区劳模

    QQ
    发表于 2020-6-28 12:06:01 | 显示全部楼层
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    公告:服务器刚移机,
    大家请不要下载东西。
    会下载失败


    QQ 手机版 小黑屋 监管台 遇到问题请联系QQ1308068381 逆天PCB论坛

    Powered by Discuz! X3.5 © 2001-2023

    快速回复 返回顶部 返回列表