|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区
您需要 登录 才可以下载或查看,没有账号?立即注册
×
L298Jenuary 2000DUAL FULL-BRIDGE DRIVERMultiwatt15ORDERING NUMBERS : L298N (Multiwatt Vert.)L298HN (Multiwatt Horiz.)L298P (PowerSO20)BLOCK DIAGRAM. OPERATING SUPPLY VOLTAGE UP TO 46 V. TOTAL DC CURRENT UP TO 4 A. LOW SATURATION VOLTAGE. OVERTEMPERATURE PROTECTION. LOGICAL ”0” INPUT VOLTAGE UP TO 1.5 V(HIGH NOISE IMMUNITY)DESCRIPTIONThe L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages. It is ahigh voltage, high current dual full-bridge driver designedto acceptstandardTTL logic levels anddriveinductive loads such as relays, solenoids, DC andsteppingmotors. Two enableinputs are providedtoenableor disablethe deviceindependentlyof theinput signals. The emitters of the lower transistors ofeach bridge are connected togetherand the correspondingexternalterminal can be used for the connectionofanexternalsensingresistor.Anadditionalsupplyinput is provided so that the logic works at alower voltage.PowerSO201/13PIN CONNECTIONS (top view)GNDInput 2 VSSN.C.Out 1VSOut 2Input 1Enable ASense AGND 1089765432131415161719182012111 GNDD95IN239Input 3Enable BOut 3Input 4Out 4N.C.Sense BGNDABSOLUTE MAXIMUM RATINGSSymbol Parameter Value UnitVS Power Supply 50 VVSS Logic Supply Voltage 7 VVI,Ven Input and Enable Voltage –0.3 to 7 VIO Peak Output Current (each Channel)– Non Repetitive (t = 100µs)–Repetitive (80% on –20% off; ton = 10ms)–DC Operation32.52AAAVsens Sensing Voltage –1 to 2.3 VPtot Total Power Dissipation (Tcase = 75°C) 25 WTop Junction Operating Temperature –25 to 130 °CTstg, Tj Storage and Junction Temperature –40 to 150 °CTHERMAL DATASymbol Parameter PowerSO20 Multiwatt15 UnitRth j-case Thermal Resistance Junction-case Max. – 3 °C/WRth j-amb Thermal Resistance Junction-ambient Max. 13 (*) 35 °C/W(*) Mounted on aluminum substrate1234567910118ENABLE BINPUT 3LOGIC SUPPLY VOLTAGE VSSGNDINPUT 2ENABLE AINPUT 1SUPPLY VOLTAGE VSOUTPUT 2OUTPUT 1CURRENT SENSING ATAB CONNECTED TO PIN 813141512CURRENT SENSING BOUTPUT 4OUTPUT 3INPUT 4D95IN240AMultiwatt15PowerSO20L2982/13PIN FUNCTIONS (refer to the block diagram)MW.15 PowerSO Name Function1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor tocontrol the current of the load.2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the loadconnected between these two pins is monitored at pin 1.46 VS Supply Voltage for the Power Output Stages.A non-inductive 100nF capacitor must be connected between thispin and ground.5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A(enable A) and/or the bridge B (enable B).8 1,10,11,20 GND Ground.9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must beconnected between this pin and ground.10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the loadconnected between these two pins is monitored at pin 15.– 3;18 N.C. Not ConnectedELECTRICAL CHARACTERISTICS (VS = 42V; VSS = 5V, Tj = 25°C; unless otherwise specified)Symbol Parameter Test Conditions Min. Typ. Max. UnitVS Supply Voltage (pin 4) Operative Condition VIH +2.5 46 VVSS Logic Supply Voltage (pin 9) 4.5 5 7 VIS Quiescent Supply Current (pin 4) Ven = H; IL =0 Vi = LVi = H13502270mAmAVen =L Vi = X 4 mAISS Quiescent Current from VSS (pin 9) Ven = H; IL =0 Vi = LVi = H2473612mAmAVen =L Vi = X 6 mAViL Input Low Voltage(pins 5, 7, 10, 12)–0.3 1.5 VViH Input High Voltage(pins 5, 7, 10, 12)2.3 VSS VIiL Low Voltage Input Current(pins 5, 7, 10, 12)Vi = L –10 µAIiH High Voltage Input Current(pins 5, 7, 10, 12)Vi = H ≤ VSS –0.6V 30 100 µAVen = L Enable Low Voltage (pins 6, 11) –0.3 1.5 VVen = H Enable High Voltage (pins 6, 11) 2.3 VSS VIen = L Low Voltage Enable Current(pins 6, 11)Ven = L –10 µAIen = H High Voltage Enable Current(pins 6, 11)Ven = H ≤ VSS –0.6V 30 100 µAVCEsat(H) Source Saturation Voltage IL = 1AIL = 2A0.95 1.3521.72.7VVVCEsat(L) Sink Saturation Voltage IL = 1A (5)IL = 2A (5)0.85 1.21.71.62.3VVVCEsat Total Drop IL = 1A (5)IL = 2A (5)1.80 3.24.9VVVsens Sensing Voltage (pins 1, 15) –1 (1) 2 VL2983/13Figure 1 : Typical SaturationVoltagevs. OutputCurrent.Figure 2 : Switching Times Test Circuits.Note : For INPUT Switching, set EN = HFor ENABLESwitching, set IN = H1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state Vsens min ≥ –0.5 V.2) See fig. 2.3) See fig. 4.4) The load must be a pure resistor.ELECTRICAL CHARACTERISTICS (continued)Symbol Parameter Test Conditions Min. Typ. Max. UnitT1 (Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5 µsT2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µsT3 (Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2 µsT4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µsT5 (Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7 µsT6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µsT7 (Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6 µsT8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µsfc (Vi) Commutation Frequency IL = 2A 25 40 KHzT1 (Ven) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3 µsT2 (Ven) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1 µsT3 (Ven) Source Current Turn-on Delay 0.5 Ven to 0.1 IL (2); (4) 0.3 µsT4 (Ven) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4 µsT5 (Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2 µsT6 (Ven) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35 µsT7 (Ven) Sink Current Turn-on Delay 0.5 Ven to 0.9 IL (3); (4) 0.25 µsT8 (Ven) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1 µsL2984/13Figure 3 : Source Current Delay Times vs. Input or Enable Switching.Figure 4 : Switching Times Test Circuits.Note : For INPUT Switching, set EN = HFor ENABLE Switching, set IN = LL2985/13Figure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.Figure 6 : Bidirectional DC Motor Control.L = Low H = High X = Don’t careInputs FunctionVen = H C = H ; D = L ForwardC = L ; D = H ReverseC = D Fast Motor StopVen = L C = X ; D = X Free RunningMotor StopL2986/13Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel4and channel2 with channel3.APPLICATION INFORMATION (Refer to the block diagram)1.1. POWER OUTPUT STAGETheL298integratestwopoweroutputstages(A; B).The power output stage is a bridge configurationand its outputs can drive an inductive load in commonor differenzialmode, dependingon thestate ofthe inputs. The current that flows through the loadcomes out from the bridge at the sense output : anexternalresistor (RSA ; RSB.) allows todetect the intensity of this current.1.2. INPUT STAGEEachbridge is driven by meansof fourgatesthe input of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB.TheIninputsset thebridgestate whenThe En inputishigh; a lowstateoftheEninputinhibitsthe bridge.All the inputs are TTL compatible.2. SUGGESTIONSA non inductive capacitor, usually of 100 nF, mustbe foreseen between both Vs and Vss, to ground,as near as possible to GND pin. Whenthe large capacitor of the power supply is too far from the IC, asecond smaller one must be foreseen near theL298.The sense resistor, not of a wire wound type, mustbe groundednear the negativepole of Vs that mustbe nearthe GND pin of the I.C.Each input must be connected to the source of thedriving signals by means of a very short path.Turn-On and Turn-Off : Beforeto Turn-ONthe SupplyVoltageand beforeto Turnit OFF,the Enableinput must be driven to the Low state.3. APPLICATIONSFig 6 showsa bidirectional DC motor controlSchematicDiagram for which only one bridge is needed.The external bridge of diodes D1 to D4 is made byfour fast recovery elements (trr ≤ 200 nsec) thatmust be chosen of a VF as low as possible at theworst case of the load current.The senseoutputvoltagecanbeused to controlthecurrent amplitude by chopping the inputs,or to provide overcurrent protectionby switching low theenable input.The brake function (Fast motor stop) requires thatthe Absolute Maximum Rating of 2 Amps mustnever be overcome.When the repetitive peak current needed from theload is higher than 2 Amps, a paralleled configuration can be chosen (See Fig.7).An external bridge of diodes are required when inductive loads are driven and when the inputsof theICare chopped; Shottkydiodeswouldbepreferred.L2987/13This solution candrive until3 AmpsIn DC operationand until 3.5 Amps of a repetitive peak current.OnFig 8it isshownthedriving ofa twophasebipolarstepper motor ; the needed signals to drive the inputs of the L298 are generated, in this example,from the IC L297.Fig 9 shows an example of P.C.B. designedfor theapplication of Fig 8.Fig 10 shows a second two phase bipolar steppermotor control circuit where the current is controlledby the I.C. L6506.Figure 8 : Two Phase Bipolar Stepper Motor Circuit.This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.RS1 = RS2 = 0.5 ΩD1 to D8 = 2 A Fast diodes { VF ≤ 1.2 V @ I = 2 Atrr ≤ 200 nsL2988/13Figure 9 : SuggestedPrinted Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).Figure 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current ControllerL6506.RR and Rsense depend from the load currentL2989/13Multiwatt15 VDIM. mm inchMIN. TYP. MAX. MIN. TYP. MAX.A 5 0.197B 2.65 0.104C 1.6 0.063D 1 0.039E 0.49 0.55 0.019 0.022F 0.66 0.75 0.026 0.030G 1.02 1.27 1.52 0.040 0.050 0.060G1 17.53 17.78 18.03 0.690 0.700 0.710H1 19.6 0.772H2 20.2 0.795L 21.9 22.2 22.5 0.862 0.874 0.886L1 21.7 22.1 22.5 0.854 0.870 0.886L2 17.65 18.1 0.695 0.713L3 17.25 17.5 17.75 0.679 0.689 0.699L4 10.3 10.7 10.9 0.406 0.421 0.429L7 2.65 2.9 0.104 0.114M 4.25 4.55 4.85 0.167 0.179 0.191M1 4.63 5.08 5.53 0.182 0.200 0.218S 1.9 2.6 0.075 0.102S1 1.9 2.6 0.075 0.102Dia1 3.65 3.85 0.144 0.152OUTLINE ANDMECHANICAL DATAL29810/13DIM. mm inchMIN. TYP. MAX. MIN. TYP. MAX.A 5 0.197B 2.65 0.104C 1.6 0.063E 0.49 0.55 0.019 0.022F 0.66 0.75 0.026 0.030G 1.14 1.27 1.4 0.045 0.050 0.055G1 17.57 17.78 17.91 0.692 0.700 0.705H1 19.6 0.772H2 20.2 0.795L 20.57 0.810L1 18.03 0.710L2 2.54 0.100L3 17.25 17.5 17.75 0.679 0.689 0.699L4 10.3 10.7 10.9 0.406 0.421 0.429L5 5.28 0.208L6 2.38 0.094L7 2.65 2.9 0.104 0.114S 1.9 2.6 0.075 0.102S1 1.9 2.6 0.075 0.102Dia1 3.65 3.85 0.144 0.152Multiwatt15 HOUTLINE ANDMECHANICAL DATAL29811/13JEDEC MO-166PowerSO20ea2 AEa1PSO20MECDETAIL ATD120 11E2 E1h x 45DETAIL A leadslug a3SGage Plane0.35LDETAIL BRDETAIL B(COPLANARITY)G C-CSEATING PLANEe3bcN NHBOTTOM VIEWE3D1DIM. mm inchMIN. TYP. MAX. MIN. TYP. MAX.A 3.6 0.142a1 0.1 0.3 0.004 0.012a2 3.3 0.130a3 0 0.1 0.000 0.004b 0.4 0.53 0.016 0.021c 0.23 0.32 0.009 0.013D (1) 15.8 16 0.622 0.630D1 9.4 9.8 0.370 0.386E 13.9 14.5 0.547 0.570e 1.27 0.050e3 11.43 0.450E1 (1) 10.9 11.1 0.429 0.437E2 2.9 0.114E3 5.8 6.2 0.228 0.244G 0 0.1 0.000 0.004H 15.5 15.9 0.610 0.626h 1.1 0.043L 0.8 1.1 0.031 0.043N 10° (max.)ST 10 0.394(1) ”D and F” do not include mold flash or protrusions.- Moldflash or protrusions shall not exceed 0.15 mm (0.006”).- Criticaldimensions: ”E”, ”G” and ”a3”OUTLINE ANDMECHANICAL DATA8° (max.)10L29812/13Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. Nolicense is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in thispublication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express writtenapproval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics 2000 STMicroelectronics – Printed in Italy – All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.http://www.st.comL29813/1 |
|