论坛风格切换切换到宽版
发帖 回复
返回列表  提醒:不能用迅雷等P2P下载,否则下载失败标(二级)的板块,需二级才能下载,没二级不要购买,下载不了
  • 3005阅读
  • 1回复

[零组件/半导体]是时候扩展EUV技术蓝图了! [复制链接]

上一主题 下一主题
在线shuszhao
 

性别:
帅哥
发帖
18052
金币
36475
提示:会员销售的附件,下载积分 = 版块积分 + 销售积分       只看楼主 倒序阅读 使用道具 0楼 发表于: 2018-10-18
随着极紫外光微影(EUVL)将在今年大量使用,以及高数值孔径(NA)版本的开发,现在正是预先准备好下一步的时候了。 vR<Y1<j  
现在正是再次探讨缩短波长并了解其优缺点的时候了。我们不知道13.5nm和1nm之间的最佳选择,所以我将这种新技术选项称为Blue-X——其波长大约介于深蓝极紫外光(EUV)微影和X射线之间。 tbD>A6&VM}  
sh(G{Yz@  
缩短波长是持续扩展光学微影技术的一种选择,着重在短于13.5nm波长的光源和光学组件,这些将在不久的未来实现EUV微影技术。 `9rwu:3i  
.C(Ir  
升级至0.5的更高数值孔径(NA),将必须付出十分昂贵的代价。不仅工具成本将倍增至2.35亿欧元,较大尺寸的扫描仪也需要更庞大的费用来打造更大规模的晶圆厂。 laN:H mR8  
ss'#sPX  
一旦采用高数值孔径作业,在考虑更高数值孔径带来更高成本的同时,也一并想到多重曝光可能更具意义。然而,缩短波长不仅能缩减数值孔径,从而有助于提高分辨率,同时还降低工具成本以及功耗要求。 44 ,:@  
ko\VDyt,  
以k1系数约0.3的单次曝光为例,在13.5nm波长时,0.33 NA达到12nm的分辨率,而在0.5 NA时可提高到8nm。业界一度关注的波长为6.7nm,但由于我们无法解决其功率问题,使得该选项缺乏带宽而被放弃了。 ,<n >g;  
DK 4 8  
相较于采用6.7nm波长,从0.33升级至更高NA有其优点:它让我们能保持相同的功率、多层(ML)和光罩等基础设施。毕竟,同时承担太多挑战并不是个好办法。 mY?^]3-_  
#UL:#pY  
我们已经了解如何根据激光等离子体(LPP)、光学组件、污染控制和光罩等方面调整功率了,接下来将能把这些学问应用于专为较短波长设计的扫描仪上。因此,我认为现在正是重新审视缩短波长选项的时候了。我建议我们在考虑其他技术选择的优点和缺点时,一路持续关注至1nm。 AFO g*{1  
x'_I{$C &  
光源和光学挑战 &1Dq3%$c  
过去,我们已经探索了11nm和6.6nm或6.7nm光源可能成为EUVL的较短波长了。氙(Xenon)可以提供11nm,而针对6.X-nm,铽(Tb)和钆(Gd)则被视为LPP光源的材料源。 =jIB5".  
S05+G}[$  
藉由增加目标材料的原子量Z,我们可以持续从LPP光源取得越来越短波长的光子。这些高Z材料并没有单一波长可发射,但有一组非常接近的未识别转换数组(UTA)波长。 ^T`)ltI]V  
s7=CH   
总发射强度将对应于UTA的总振荡器强度,必须针对每一个可能的UTA评估其潜在的转换效率。 _]8FCO  
.w3.zZ0[  
这是一个很有意思的领域,提供了几种有趣的功能,如芯片的K边缘、碳窗(carbon window)和水窗(water widow)。针对水窗(X射线波长范围在2.34-4.4nm之间)近期已经有许多关于显微镜应用的开发。 n;8[WR)  
<a7y]Py  
然而,在产生这种数百瓦较短波长光子方面存在若干挑战。最大的挑战之一在于驱动雷射所需的功率。针对6.X-nm,所需功率估计约为100kW,而13.5nm则需要~40kW。 KB49~7XjQ@  
a5jc8S>  
我曾经见过65kW CO2雷射的设计,但由于功率要求很高,此时可能值得研究其他替代激光技术了。俗称“星战计划”(Star Wars)的美国政府战略防御计划目前采用的是1微米100kW雷射。 g*69TqO^  
Br.$:g#  
另一个具有吸引力的选择是美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Laboratory;LLNL)的1.2微米雷射。它可以调整至300kW,同时保持小于CO2雷射的尺寸。 -L@4da[]i  
%Cbqi.iuQ  
当然,我们还必须关注在1.2微米时的转换效率(CE)。1微米Nd:YAG固态雷射的CE低于10微米CO2的CE。因此,在我们确定100kW驱动雷射的最佳选择之前,必须先弄清楚几件事。  nN1\  
d2sY.L  
传输效率和光阻剂 KM$L u2  
为了保持与当今扫描仪类似的传输效率,我们将会需要类似于现有的功率和ML反射率。我怀疑如果我们牺牲一部份在这些区域缩短波长取得的增益,以缩短的波长来看,功率要求和数值孔径是否就能随之降低。 ]w z`j1  
*TQXE:vZ[  
6.7nm的ML反射率可能会类似于13.5nm,因而其成为一个理想选择。而对于其他波长的ML,获得高反射率的挑战将十分困难。 RGFanP  
KDr?<"2L  
在Blue-X区域探索的各种不同波长中,由于生物应用的前景,水窗(2.34-4.4nm波长)已经成为最主要的研究之一。例如OptiXfab最近展示用于水窗的ML收集器提升10倍性能,但反射率仍然不足30%,所以我们还有很长的路要走。 nNJU@<|{*  
F#_JcEE  
对于较短波长区域的ML,接口粗糙度似乎是提高反射率的限制之一。针对ML研究的新化学物质可望有助于我们将反射率提高到可接受的数值。 UFBggT\  
FJo  ?~  
正如一位ML专家所说的,“我们喜欢有利的挑战……还记得我们在13.5nm达到的成果吧?”对此,我将满怀期待。让我们看看在拥有强大UTA下,较短波长可以为我们带来什么。


评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

一般

差劲
离线1014587981

性别:
人妖
发帖
660
金币
443
提示:会员销售的附件,下载积分 = 版块积分 + 销售积分       只看该作者 1楼 发表于: 2018-10-18


快速回复
限150 字节
 
上一个 下一个