我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 465|回复: 0

zt   光荣与梦想:中国数字电视发展之路 - 消费电子

[复制链接]

该用户从未签到

1万

主题

1292

回帖

2万

积分

管理员

积分
29577

社区居民最爱沙发原创达人社区明星终身成就奖优秀斑竹奖宣传大使奖特殊贡献奖

QQ
发表于 2013-3-29 11:20:31 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区

您需要 登录 才可以下载或查看,没有账号?立即注册

×
光荣与梦想:中国数字电视发展之路星期四, 10/23/2008 - 14:04 — 陶显芳
作者:陶显芳 康佳集团
<strong>一、蹉跎岁月 </strong>
2006年8月30日,国家标准化管理委员会在其官方网站上刊登了“2006年第8号(总第95号)中国国家标准批准发布公告”,标准号为GB20600-2006的《数字电视地面广播传输系统帧结构、信道编码和调制》就藏身于这批标准之中。公告显示,标准的批准时间为8月18日。作为国家强制性标准,国家给了一年的产业准备期,2007年8月1日将正式实施。
现在,一年的产业准备期已经过去了,我们还没有看到国内哪个电视台的电视节目表中有“高清”的字样,也没看到有哪个电视台给高清数字电视节目频道分配了频率使用表。在商场中也没有看到符合这个高清标准的电视机卖;由此,人们不得不怀疑,这套3合1的中国高清数字电视地面传输标准是否实施艰难。
自从1999年,中国政府有关部门宣布我国的高清数字电视节目试播成功以来,数字电视就开始成为中国人们生活中的一件大事,在各种新闻媒体上,有关数字电视的消息不断流传。从2000年起,每次在深圳高交会上都是一个最大的亮点。
2001年10月,在深圳高新技术交易会上,国内几大电视机生产厂商都展出了自己的高清数字电视产品,这不但给深圳高新技术交易会增添了光彩,也给政府有关部门以及各大电视机厂出尽了风头。
2002年国家广电总局向世人宣布:2003年广电将开播10套以上数字电视影视频道;2004年为中国广播电视的数字化年和产业化年;然而这些美好的愿望一直没有实现。
2003年10月,上海交大的ADTB-T方案和清华DMB-T方案,同时在深圳高新技术交易会上亮相,并突然传出我国优选的两套高清数字电视技术标准方案测试都未能成功。人们才开始知道,以前宣布我国的高清数字电视节目试播成功是“大红灯笼高高挂”中的四姨太怀孕——假的。
从此,关于上海交大的ADTB-T方案和清华的DMB-T方案的好消息不断传出。美国在成立华盛顿新政府的时候,曾召开过一次新宪法修改讨论会,各个州的代表为了表达自己的利益,互相讨价还价,使讨论会连续开了200多天,最终才制订出一部以今天的人看来也是一部非常成功的宪法;而我们为了制定一个“数字电视地面广播传输标准”双方也争斗了7年多的时间,这说明,我们的这个标准比美国的宪法还要伟大。只不过是,美国的新宪法当时是代表46个州的利益;而我们现在的新标准只是代表两方的利益。
实际上在2001年10月至2002年4月期间,国家标准化管理委员会还另外收到过成都电子科技大学和广电总局下属的广科院等4家单位提出的3套方案,他们也要求加入地面传输标准的竞标行列。这样,我国的高清数字电视地面传输标准方案就不只是上海交大和清华两家,而是6家。可能是因为其它4家单位实力还不够雄厚,或者脸皮薄,才不敢与上海交大和清华争斗,要么,5套方案一起包装成一个5合1的中国高清数字电视地面传输标准,哪就更起劲了。
<strong>二、是标准催生数字电视,还是数字电视催生标准 </strong>
什么叫做标准?标准就是产品生产厂家对自己生产的产品质量的承诺和保证,也是国家技术、质量督察和检测部门对产品质量进行检查的法律依据。因此,标准一般都是首先在企业中使用,这称之为企业标准;尔后,等使用企业标准的企业逐步多起来以后,经过同一修改,企业标准才慢慢升为行业标准或国家标准,最后升为国际标准。企业标准一般要求优于行业标准;而行业标准又优于国家标准或国际标准。
当然任何标准都需要技术来支持,采用什么样的技术就有什么样的标准,但对于一个标准却可以采用多种不同的技术来实现。例如:采用16-QAM数字调制,其码率是4bit/秒;而采用8-VSB数字调制,也可以达到同样效果,或者选用3780-COFDM数字调制,也同样实现这个功能。但各种不同技术的应用,虽然功能一样,在性能上多少还是有些差别的。正是因为有这么一点点的差别,就使得ADTB-T和DMB-T两个方案的组织互相争斗的时间达6、7年之久。
制定一个技术标准一直以来都是一件很简单的事,国家标准化管理部门只需在现有各类产品的企业标准基础上,对所有厂家的各种型号产品的主要技术性能和质量指标,进行统一测试、对比、分类,然后制定一个既能体现各种产品的主要技术性能和质量指标,同时也符合用户质量要求的标准,一个新产品的技术标准(国家标准)就这样地诞生了。
因此,一项新的技术发明首先必须有人使用,并且要把它转化成产品后,才有可能成为标准。这种技术转化的过程应该是企业,即生产产品的单位,而不是学校或技术研究所。企业生产产品首先要经过设计定型、生产定型这两个基本过程,然后才能向技术质量检测和标准部门申请产品技术标准,即企业标准。
标准的制定过程应该是企业与国家标准化管理部门份内的事,而这次HDTV地面传输标准的制定却要劳动这么多单位,这么多部门,这可不是一件简单的事情。但我们不得不怀疑,没有企业的参与,制定这样的一个标准能够成功吗?可曾想过不久前出台的EVD、AVS等标准,这些标准还没等到产品生产出来,就将要过期了,它们很可能就是HDTV地面传输标准的前车之鉴。
国家标准出台太早,对技术产品性能的提高一点没有好处。比如我国发展最快的产品VCD、CVCD、SVCD以及逐行扫描电视;一开始的时候,这些产品都没有国家标准,所以它才能这么快的发展起来;但另一方面,如果没有国家标准,各个企业的产品质量也会鱼龙混杂,一些企业就会粗制滥造。因此,国家标准就是用来规范这些企业的行为,对他们产品质量进行监督和处罚,防止一些企业粗制滥造浪费社会资源。
数字电视也一样,不是有了一个国家标准就能发展起来的,相反,如果要想让数字电视产业能发展起来,国家就不应该马上制定国家标准,而是要等数字电视产品的技术性能和质量基本稳定以后再制定国家标准。在国家标准还没出台之前,一种产品有几个企业标准都是正常的,到最后,国家应该把几个企业标准统一到一个标准之中。
<strong>三、什么是单载波调制和多载波调制 </strong>
大家都知道,上海交大的ADTB-T方案和清华的DMB-T方案,双方争论的焦点就是,单载波调制性能优越还是多载波调制性能优越。因此,在这里还是有必要简单介绍一下,什么是单载波调制和多载波调制。
所谓单载波调制,就是将需要传输的数据流调制到单个载波上进行传送,如:4-QAM(QPSK)、8-QAM、16-QAM、32-QAM、64-QAM、128-QAM、256-QAM或8-VSB、16-VSB等都是单载波调制。
上海交大的ADTB-T方案选用的是单载波调制,在1999年50周年大庆试播的时候,上海交大的ADTB-T方案采用的是8-VSB数字调制,到后来才改为16-QAM数字调制。
QAM调制也叫正交幅度调制,简称正交调幅;因为正交调幅有很多种调制模式,如上面列出的就有7种,一般记为n-QAM,n表示各种调制映射到星座图上的模数。模数越低,调制和解调电路就越简单,但传输的码率也相应降低,例如:4-QAM的码率为2bit/S,而16-QAM的码率为4bit/S。一般,信号传输条件越差,选择的模式就越低,例如:卫星通信只能选择QPSK,而有线电视可选64-QAM和128-QAM,甚至256-QAM;对于地面电视广播,信号发送一般选8-QAM、16-QAM、32-QAM,最高只能选到64-QAM。
正交调幅就是把一序列需要传送的数字信号(2进制码)分成两组,并分别对两组数字信号进行幅度编码,使之变成幅度不同的调制信号,即I信号和Q信号,然后用I信号和Q信号分别对两个频率相同,但相位正好相差 的两个载波进行调幅,最后再把两路调制过的信号合成在一起进行传送。由于在调制之前已经对输入信号进行过幅度编码,因此,这种调制也称为正交数字幅度调制。
我国的HDTV如选用MPGE-2编码,最高传送码率大约为20M bit/S,如果选用16-QAM调制模式,其频谱利用率是每赫芝传送4位数据,即码率为4bit/S。由此可知其载波最高频率约为6MHz,经高频调制后采用残留边带发送,其载频带宽大约为7点多MHz。
所谓多载波调制,就是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,然后调制到在每个子信道上进行传输。如:n-COFDM,其中n为子载波数目。清华的DMB-T方案选用的是多载波调制,在DMB-T方案中采用3780-COFDM调制方式。多载波调制也叫编码正交频分复用调制。
就多载波调制中的各个载波而言,其调制的工作原理与n-QAM单载波调制的工作原理基本相同,只是把需要传送的数据分成很多组(这里为3780组),然后每组再分成两组,通过幅度编码以后便可生成两组I信号和Q信号,而后用3780组I信号和Q信号分别对3780个频率各不相同的载波进行正交调制,最后把所有的调制信号合在一起进行传送。
<strong>四、ADTB-T和DMB-T谁能当驸马 </strong>
上面我们简单介绍了单载波调制和多载波调制的工作原理,下面我们进一步来分析单载波调制和多载波调制的优、缺点,最后由大家来猜一猜,ADTB-T和DMB-T,谁能当驸马?
根据上面分析,采用16-QAM单载波调制,其最高码率为24Mbit/S,载波频率为6MHz;如果选用多载波调制,在码率同样为24Mbit/S的情况下,采用3780-OFDM多载波调制,对于3780个载波平均下来,每个载波平均传送的码率大约只有6.3Kbit/S,这样,哪怕每个载波都选用QPSK调制,其载波的最高频率还是可以选得很低;如果选用16-QAM或64-QAM调制,其载波的最高频率还可以进一步降低。但这是在没有考虑解码以及图像信号处理需要时间的理想情况,实际并不是这样。
一方面,在数字电视机中,选用的载波频率也不能太低,因为,数字信号传送的速度一定要大于图像信号处理的速度,这样,最后输出信号才不会产生间断。例如,我国HDTV的行扫描频率大约为32KHz,如果不考虑MPEG解码电路以及图像信号处理电路对输入信号处理所需要的时间,那么,多载波的最低频率就不能低于32KHz,否则,行扫描电路就会出现没有信号可扫描的情况,图像显示就会出现间断。因此,MPEG解码电路以及图像信号处理电路对数字信号传送速度也有同样的要求。
另一方面,多载波解调制对数字信号进行分批处理时候,每次都需要等3780个载波传送的数据全部到齐以后,才能一次性地对数据进行处理,即需要对信号进行并转串处理;因此,其解调制过程消耗的时间相对来说比较长,其最低频率也就不能取得很低。另外,多载波调制一般都不采用残留边带发送,因此,调制后的频带宽度相对于残留边带发送来说大约要宽一倍。
综合以上因素,就平均而言,多载波的平均频率相对来说可以低一些,但载波的最高频率与单载波的频率相对来说,并不会相差很大。
载波频率低的最大好处就是,可以降低信号传送过程中的多经反射干扰(即图像重影效应)。下面我们分三种情况来分析:
比如单载波频率为6MHz,其周期为0.17uS,两个正交载波相差1/4个周期(90°),为0.0425uS;由于电磁波的速度约等于光速,即每微妙为300米,那么,频率为6MHz的载波对应于一个周期所传播的距离就是51米,即波长为51米;半个周期为25.5米(半波长),1/4个周期为12.75米(1/4波长)。
如果反射体的路经距离正好与电视接收点相差12.75米(或1/4波长的奇数倍),即电视接收机相当于同时收到两个信号,一个是主信号,另一个是反射信号,两个调制载波信号的相位正好相差90°(1/4波长);这样,两个调制载波信号互相叠加以后,不但会改变原来信号的相位,同时也会改变信号的幅度,结果相当于I和Q两路信号互相串扰,并且,当两个信号叠加之后的相位差越接近时,即反射信号越强,干扰就越严重;在这种情况下,数字电视接收机的调制解调电路可能无法正常解码。
如果反射体的路经距离正好与电视接收点相差半个波长(25.5米,或半个波长的奇数倍),则两个调制载波信号的相位正好相差180°(半波长),由于正交调制的两路信号(I和Q)都是对载波的半波进行幅度调制的,因此,两路调制过的信号合成之后就相当于是对载波的1/4波进行调制;当原信号正、负半周是对称时,则两个信号互相叠加的结果会使接收信号减弱,相当于电视接收机接收灵敏度降低;当原信号正、负半周不是对称时,则两个信号互相叠加的结果会使接收信号失真,相当于两路信号(I和Q)互相串扰,与两个调制载波信号的相位相差90°时没有多大区别。
如果反射体的路经距离正好与电视接收点相差1个波长(51米,或1个波长的整数倍),两个信号的相位正好相差360°(1个波长);当原信号正、负半周为对称时,则两个信号互相叠加的结果会使接收信号加强,相当于电视接收机接收灵敏度提高;当原信号正、负半周不是对称时,则两个信号互相叠加的结果会使接收信号失真,相当于两路信号(I和Q)互相串扰,与两个调制载波信号的相位相差90°时没有多大区别。
由此可见,只要接收到两个信号(主信号和反射信号)的相位角相差正好是90°(1/4波长)的整数倍,对单载波正交调制信号造成的干扰最严重;对于其它相位差同样也会产生干扰,只是干扰程度相对来说没有90°时那么严重。
假设多载波的最高频率只有3MHz,即为单载波频率的二分之一,相对来说多载波的波长比较长;根据两点之间的电磁场强度与距离的平方成反比的定理,可以求得,在1/4波长处是干扰最严重的地方,两者的电磁场强度相差4倍。而对所有载波平均而言,甚至可以相差几百倍,即多载波调制的多经干扰相对来说比单载波轻。
但多载波调制和解调的过程都非常麻烦,多个载波经过调制后合在一起传输,解调时对其再进行分离就非常困难;因为,在高码率传送之下,它无法用滤波电路把各个调制载波信号选出来,只能采用同步分离的方法,因此,它对同步信号的相位要求非常严格,所以多个载波对相位噪音的要求比单载波高很多。
如果多载波调制信号解调时各个载波信号分离不干净,就相当于多个载波之间会互相产生干扰,信噪比(S/N)就会降低。一般多载波解调电路要求信噪比(S/N)的门限值要比单载波解调电路高好几个db(根据报道为3-4dB)。
目前已经有很多方法可以降低单载波多经反射干扰,例如,采用数字延时均衡技术,即从信号中取出一部分信号经延时一个相位后再与原信号叠加,现在这种技术可以通过软件控制来实现,将来所有的数字信号接收机都可以采用这种技术。
很多人都认为,只有多载波调制才能用于移动电视接收机,而单载波调制无法实现移动接收的功能。我认为,这种想法毫无道理。
比如,一辆汽车的速度是每小时100公里(28米/秒),那么,它跑1/4周期(6MHz)的时间(0.0425uS)所对应的距离就是1.19×10-6米,这相当于2.3×10-8个波长;或它跑1/4波长的距离(12.75米)所对应的时间为0.46秒,相当于2710000个周期。这两个结果无论是在时间上或在距离上都没有可比性。因此,汽车速度对单载波的相位影响几乎等于零。而受影响最大的反而应该是,在0.46秒时间内,数字延时均衡电路是否能正常工作。
而对于高频载波在移动接收过程中产生的多普勒效应,它只影响接收频率的偏移,这种影响对单载波调制和多载波调制都是一样的。
特别值得注意的是,由于ADTB-T是单载波技术,因此,它对广电原有的发射系统能够很方便的接洽。根据资料分析,在前端数字化改造方面,交大方案的成本要比清华方案的成本节省约80~90%,仅需要一个MPEG和ADTB-T调制器即可利用原有模拟发射机发射数字信号,而清华方案必需要整套更换成全新的数字发射机,这笔代价在边远地区还是需要斟酌的很大的一笔开销。
同时,在衡量一个数字信号接收的时候,还需考虑信号的接收稳定率;由于是数字信号的属性是0和1,就是要么收到,要么收不到,这就凸现门限的意义;根据测试结果,DMB-T的接收门限比DVB-T低,可ADTB-T的接收门限比DMB-T还要低,这就是为什么采用ADTB-T的发射系统其覆盖范围比DMB-T的发射系统的覆盖范围更广阔的原因,因为其门限低,采用ADTB-T接收机的灵敏度要比DMB-T接收机的灵敏度高3-4dB,因此,其能够在更远的距离上接收弱信号。
另外,上交大单载波系统在组建单频网(SFN)时,对发射机时钟频率的精度和稳定度的要求仅为E-9。这同任何多载波系统相比,要低三个数量级,因此,其工程造价较低。
在发射功率方面相比,上交大单载波系统的发射机平均功率是多载波系统的二分之一,其标定功率则是后者的五分之一。即:在同样的覆盖范围之内,为了实现高数据率的固定接收,上交大方案需要1kW的平均发射功率,则其发射机的标定功率需要4kW,因为其峰均比(PAR)接近6dB。
而对于多载波系统(以欧洲标准为代表)而言,如果要覆盖相同的地区,则其平均发射功率需要2.0-2.5kW。这是因为:多载波系统与单载波系统相比,载噪比(C/N)门限值要增加3-4 dB。其次,其发射机的标定功率需要20-25kW,因为其峰均比(PAR)接近10dB。
选用单载波系统将来还可以把地面接收和有线接收同用一个高频头和解码器,因为,目前有线电视采用的调制方式基本上都是采用64-QAM,而地面传输一般都采用16-QAM,将来也可以选用64-QAM。
上面这些分析,对老百姓来说,不一定会感兴趣;但老百姓感兴趣的是,怎么样能买到既便宜又好用的电视机。相比之下,交大方案数字电视接收机的生产成本大约要比清华方案的生产成本低20~30%。这很清楚,如果由老百姓自己来选择的话,他们一定会知道自己应该选择什么样的数字电视接收机。但什么时候老百姓有过自己的选择权,皇帝家的驸马是由老百姓来选择的吗?
<strong>五、ADTB-T和DMB-T是双胞胎,还是畸形儿 </strong>
谁都清楚,是双胞胎就应该分开来抚养,是畸形儿就应该赶快动手术。上海交大的ADTB-T方案和清华的DMB-T方案,是两套功能完全相同的系统方案,它们在功能上没有互补性,在性能上也没有多大区别,它们在使用中完全可以互相取代,即他们是一对双胞胎。
既然是双胞胎,为什么在标准号为GB20600-2006的《数字电视地面广播传输系统帧结构、信道编码和调制》标准中还要把他们捆绑在一起,这不是把双胞胎又改变成畸形儿了吗?这个道理,在一般人看来是很难想象的,在医学上更无法进行解释。
实践已经证明,把上海交大的ADTB-T方案和清华的DMB-T方案,两个捆绑在一起,既增加成本(估计增加30%),还会降低机器的技术性能。国内所有电视机生产企业都强烈反对,殊不知中国的老百姓是否反而会喜欢这种奇特电视机?如果不是这样的话,那么只能认为,把两个方案捆绑在一起,唯一的好处就是能够增加“鸡的P”。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

公告:服务器刚移机,
大家请不要下载东西。
会下载失败


Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

( 闽ICP备2024076463号-1 ) 论坛技术支持QQ群171867948 ,论坛问题,充值问题请联系QQ1308068381

平平安安
TOP
快速回复 返回顶部 返回列表