我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 1070|回复: 2

[技术文章] 为什么分立式JFET仍然活跃于模拟设计中?

[复制链接]
  • TA的每日心情

    6 天前
  • 签到天数: 68 天

    [LV.6]常住居民II

    1万

    主题

    8193

    回帖

    5万

    积分

    三级逆天

    积分
    53625

    终身成就奖特殊贡献奖原创先锋奖金点子奖优秀斑竹奖宣传大使奖

    发表于 2017-11-21 14:37:27 | 显示全部楼层 |阅读模式







    虽然增强型FET比耗尽型FET的应用要广泛得多,但耗尽型FET尤其是JFET在模拟设计中仍占一席之地。增强型 MOSFET 器件需要能量来供电,而耗尽型器件需要能量“停止”供电,这是它们的主要区别。
    目前市场上有6种不同类型的场效应管(FET),在两类主要的FET中,增强型FET比耗尽型FET的应用要广泛得多。但耗尽型FET尤其是JFET在模拟设计中仍占一席之地。

    图1:增强型N沟道MOSFET。
    如图1所示,增强型MOSFET用作“常闭”压控电子阀门。在没有栅极偏置电压时,没有电流流动。当有电压施加于MOSFET的栅极时,在P基板中形成诱发的沟道,电流开始流动,如图1的特征曲线所示。

    图2:耗尽型N沟道JFET。
    图1所示的增强型MOSFET和图2所示的耗尽型JFET之间的主要区别是,增强型MOSFET需要能量才能提供电源,而耗尽型器件要求用能量去“停止”供电。由于JFET具有“自我实现”(self-actualization)的特性,对于电路初始启动期间能量不足的应用,JFET特别适合。在这些应用中,由于输入电压过小,因而无法提供足够的偏置电压使增强型器件工作。
    这种器件的一个例子是工作于极低电压轨的电源电路,比如采用单节电池供电的电路。很多情况下,电源需要从极低的电压轨产生较高的电压,但不必提供很大的电流。这类电源可以用来产生“唤醒”电压轨,以便在启动时唤醒其它电路;当电路需要更高的电压而电压轨不能满足、而且只需低到中等电流时,可以使用这类电源给电路供电。
    如图3所示,这样的电源有两个主要元素:一个是从很低电压轨苏醒过来的方法,但不能激活大多数增强型(常闭)器件,一个是能够产生高于输入电压的电压。

    图3:JFET低输入电压反激电源。
    第一个条件可以通过使用JFET来满足。如前所述,当没有施加控制电压时,JFET将导通,允许电流在初始低电压状态下流动。在时间t=0时,电流开始在成对的JFET Q7和Q8之间流动,进而在反激变压器T1的次级绕组中感应到电压。当在T1次级的反相端产生足够的负电压并达到Q7和Q8 JFET的“关断”电压时,这两个JFET将关断。这将导致初级电流缓慢地停止流动,次级电压逐渐下降到JFET Q7和Q8的栅极电压开始再次接近0V的点。在这个点它们将再次导通,整个振荡过程得以继续。这个过程如图4和图5所示。
    U2会不断监视电压的上升。U2是一个比较器,用于监视输出电压,驱动Q9导通来关闭振荡,并将电压拉到由LTC1440比较器芯片的内部基准电压设定的规定参考值。参见图4和图5,它们来自实际的JFET评估板。图4显示的是次级线圈反相侧的振荡和控制信号,图5显示的是初级线圈的同相侧。在开关周期的启动过程中,输出电压不断爬升,而在开关周期的关闭过程中,振荡停止,电压下降。

    图4:输出电压测试点TP9。

    图5:输出电压测试点12。


    控制方法

    D7通过一对低前向压降的肖特基二极管对振荡器输出进行整流,C6和/或C5为输出提供保持电容。值得注意的是Q6的功能。MOSFET提供输出上升期间与负载的隔离。只有当振荡达到足够的且可持续的输出时,才允许电流流向负载。
    这种控制方法是一种简单的“继电器式”控制方法。振荡不断增加,直到输出分压器上的电压达到LTC1440比较器的内部电压基准。当达到或超过阈值时,振荡被关闭,直到输出电压降低到控制基准以下。开-关振荡周期取决于输入供电电压值(可能低于1V)和输出负载。为了演示,将一个50kΩ的电位器串联一个3kΩ的电阻用作测试负载。所有示波器图形都是在负载为3kΩ、输入供电电压为1V时捕获的;然而经过验证,在轻负载时,电路将在不到0.5V和供电电压轨处工作。
    虽然前面所述的简单JFET电源具有在极低输入源条件下工作的优势,但它却存在静态电流消耗相对较高的问题。在(这种电路特别有用的)电池供电应用中,这不是一个好的特性。在次级线圈低侧增加一个额外的FET开关(该开关由控制比较器驱动的高阻抗触发器触发),可以消除在电源周期关闭阶段的低阻抗路径,极大地减小供电电路的静态电流。这样就能取得更高的效率,代价只是稍微增加了复杂性。

    图6:低静态电流JFET升压转换器。

    图7:位于测试点TP7的Vout脉冲控制信号。
    在性能方面,除静态电流消耗外,这个低静态电流转换器类似于更简单的转换器。如图7所示,当JFET振荡器运行时,输出电压上升,直到比较器控制电路关闭振荡器,同时电压也一直下降到下个周期,就像前面介绍的简单转换器一样。
    回复

    使用道具 举报

    该用户从未签到

    22

    主题

    2908

    回帖

    100

    积分

    二级逆天

    积分
    100

    社区居民忠实会员终身成就奖优秀斑竹奖

    QQ
    发表于 2017-11-21 16:35:34 | 显示全部楼层
    回复

    使用道具 举报

    该用户从未签到

    7

    主题

    24

    回帖

    0

    积分

    一级逆天

    积分
    0

    终身成就奖

    QQ
    发表于 2017-11-22 11:19:06 | 显示全部楼层
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    论坛开启做任务可以
    额外奖励金币快速赚
    积分升级了


    Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

    本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

    平平安安
    TOP
    快速回复 返回顶部 返回列表