我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 1450|回复: 1

[零组件/半导体] 下一代OLEDs显示屏的关键技术

[复制链接]
  • TA的每日心情
    无聊
    12 小时前
  • 签到天数: 69 天

    [LV.6]常住居民II

    1万

    主题

    8194

    回帖

    5万

    积分

    三级逆天

    积分
    53630

    终身成就奖特殊贡献奖原创先锋奖金点子奖优秀斑竹奖宣传大使奖

    发表于 2017-11-28 10:04:13 | 显示全部楼层 |阅读模式
    近日来,随着Apple新一代手机iPhone 8 和 iPhone X 的陆续上市,在大家关注其刷新纪录的销量(当然不包括iPhone 8)和亮眼的财报外,OLEDs屏幕的华丽登场也是亮点之一。虽然Samsung、LG和Sony早已布局OLEDs技术多年,且早已推出包含手机跟电视在内的各种概念型产品,其中Samsung主打小尺寸的手机面板,LG和Sony则聚焦大尺寸高端电视市场(不得不高端,因为真的贵),但吸引市场真正意识到OLEDs面板的还是Apple的新机。
    OLEDs技术自1990年代初逐渐成形,但直到近几年才算是有了成熟的商业应用。韩系的三星跟LG,属于最早耕耘这项技术的厂商群体,日系厂商JDI和Sharp则紧抱液晶技术,后者虽然享受了很长一段时间的技术红利,但自从Apple改投他人怀抱后,JDI面临巨大亏损,才着手寻求外部资金共同开发喷液式OLEDs技术,力求绝处逢生。如今,中系厂商以京东方为首的面板厂也在今年顺利出货OLEDs柔性屏给华为等国内大厂,OLEDs的市场也正式进入了战国时代,未来就看不甘被韩厂控制屏幕来源的Apple会不会也参一脚,使这个已被分食的差不多的市场更加混乱。
    OLEDs全称有机发光二极体(Organic Light Emitting Diodes)(图一),其主要特性来自其中的有机发光层(Emissive Layer),施加适当电压后,电子和电洞在发光层中结合产生光子,根据材料特性发出不同波长的可见光。一般而言,有机发光层可依据发光机制分为三类:萤光(Fluorescence)材料、磷光(Phosphorescence)材料和本文将介绍的热延迟萤光(Thermally Activated Delayed Fluorescence, TADF)材料。萤光材料是最早被用于OLEDs元件的制备,随后在1998年左右,磷光材料也被成功地应用于OLEDs技术中,而且相较于萤光,它拥有更好的能量使用效率。而近几年,透过九州大学Chihaya Adachi教授自2011年起发表的一系列文章,TADF材料凭借足以媲美磷光材料的效率,吸引了各界的注意。
    图一:OLEDs是由底部的基板,中间诸多的有机层和电极组成。一般提到的发光材料和参杂物都属于发光层(Emissive Layer)(来源:Cynora官网 https://www.cynora.com)
    出于物理的限制,萤光材料在能量转换效率上,便不如磷光材料跟TADF材料(图二)。这个差别有其量子物理上的原因。一般而言,有机材料的激发态(Excited State)分为单重态(Singlet)和三重态(Triplet),当电子跃迁时会以1:3的比例分布于单重态和三重态。单重态返回基态所发出的光即为萤光(TADF材料也是这个机制),而三重态返回基态所发出的的光称为磷光。萤光材料由于禁止机制(Forbidden Rule,三重态电子无法和基态电子形成自旋轨道耦合,违反包利不兼容定理),所以电子只能以热能的方式释放能量,因此萤光材料只有25%的能量使用效率。
    图二:OLEDs元件的发光机制比较图。萤光(Fluorescence)材料属于第一代应用材料,磷光(Phosphorescence)材料为第二代材料,而TADF则为新一代的关键材料,一般而言单重态(S1)和三重态(T1)间的能量差越低越好。 (来源:Information Display Vol.33 No.2 2017)
    磷光材料(参入Ir或Pt)跟TADF材料则可充分利用单重态和三重态达到100%的能量使用效率。磷光材料藉由重金属的自旋轨道耦合,可以让原本在单重态的电子转换到三重态,从而利用所有的激发态电子,而这有利于降低器件能耗和延长器件寿命。但其主要缺点在于,Ir和Pt等金属非常稀缺,成本昂贵而且污染极高。 TADF材料与其相比,同样能够透过将三重态电子转换到单重态,返回基态发出萤光,达到百分之百的能量使用率,而且不需要借助稀有的贵金属。根据洪德法则,三重态的能量低于单重态的能量,而这个能差(ΔEST)对于有机材料来说一般在500meV以上,使得三重态的电子在没有外加能量的情况下很难回到单重态。而TADF材料利用特殊的分子设计策略,减少分子中电子轨域中的最高占有轨道(HOMO)和最低未占有轨道(LUMO)的重叠,合成出ΔEST <50meV的分子结构,这时只需室温下的热能便足以使三重态的电子转移到单重态。利用这个机制,TADF材料也能拥有堪比磷光材料的100%内部量子效率。
    除了磷光材料的高制备成本外(主要来自贵金属),蓝光一直是磷光材料的最大罩门,即便经历了长达20年的产学研究,仍旧无法开发出兼具效率、稳定性和纯色的蓝色磷光材料,使得市场对TADF材料寄予重望。根据2017上半年,德国Cynora公司发表的成果看来,TADF材料已经在效率(外部量子效率14%,一般蓝色磷光材料约在8%左右)、色度(CIEy 0.27)和寿命上追平甚至部分领先传统蓝色磷光材料,有鉴于TADF材料的研究起步于2010年前后,TADF材料的潜力十分令人期待。
    如今所有的OLEDs显示屏,仍旧采用萤光材料作为蓝光光源,为使其拥有足够亮度,蓝色像素的大小约是红色跟绿色的两倍,倘若真能成功开发出商用蓝光TADF材料,显示屏的分辨率将能进一步提升,电池的寿命也能进一步延长。效率之外,TADF材料的发光颜色是可以控制的,利用修饰分子基团和结合位置,可以调控发出光的波长,目前已能调控出涵盖显示和照明需求的可见光波长。
    现阶段市面上最接近量产的两家TADF材料供应商,分别是位于德国Bruchsal的Cynora公司,和位于日本由Adachi教授共同成立的Kyulux。Cynora专精于蓝光TADF材料的开发,在前阵子获得韩系厂商三星和LG达两千五百万欧元的投资,预计将在2017年年底推出第一款商用蓝光TADF材料,而Kyulux也于去年得到第三方投资一千五百万欧元,并在黄光与绿光TADF材料上取得不错的成绩。如果未来这两家公司真能将TADF材料带进OLEDs市场,将会为面板产业带来新一波的成长机会。
    回复

    使用道具 举报

    该用户从未签到

    0

    主题

    5178

    回帖

    2062

    积分

    二级逆天

    积分
    2062

    社区居民忠实会员社区劳模特殊贡献奖最爱沙发终身成就奖优秀斑竹奖原创先锋奖

    QQ
    发表于 2017-11-28 10:15:54 | 显示全部楼层
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    论坛开启做任务可以
    额外奖励金币快速赚
    积分升级了


    Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

    本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

    论坛技术支持QQ群171867948 ,论坛问题,充值问题请联系QQ1308068381

    平平安安
    TOP
    快速回复 返回顶部 返回列表