我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 2039|回复: 7

[零组件/半导体] 对比各巨头的7nm制程,如何抢夺这一关键节点?

[复制链接]
  • TA的每日心情

    11 小时前
  • 签到天数: 106 天

    [LV.6]常住居民II

    3万

    主题

    8260

    回帖

    8万

    积分

    三级逆天

    积分
    81512

    终身成就奖特殊贡献奖原创先锋奖金点子奖优秀斑竹奖宣传大使奖

    发表于 2018-6-24 08:02:18 | 显示全部楼层 |阅读模式

    马上注册,结交更多好友,享用更多功能,让你轻松玩转社区

    您需要 登录 才可以下载或查看,没有账号?立即注册

    ×
    突击7nm制程需要克服怎样的困难?几方大佬又是如何布局这一关键节点?
    谈起半导体技术的发展,总是回避不了“摩尔定律”这四个字——当价格不变时,集成电路上可容纳的元器件的数目,约每隔18~24个月便会增加一倍,性能也将提升一倍。
    芯片的制造工艺常常用XXnm来表示,比如Intel最新的六代酷睿系列CPU就采用Intel自家的14nm++制造工艺。所谓的XXnm指的是集成电路的MOSFET晶体管栅极的宽度,也被称为栅长。栅长越短,则可以在相同尺寸的硅片上集成更多的晶体管。
    目前,业内最重要的代工企业台积电、三星和GF(格罗方德),在半导体工艺的发展上越来越迅猛,10nm制程才刚刚应用一年半,7nm制程便已经好似近在眼前。
    在业界盛行的摩尔定律将死的论调下,如此猛烈的突击7nm制程需要克服怎样的困难?几方大佬又是如何布局这一关键节点?本文将为您解读。


    半导体工艺的Tick-Tock

    Tick-Tock,是Intel的芯片技术发展的战略模式,在半导体工艺和核心架构这两条道路上交替提升。半导体工艺领域也有类似的形式存在,在14nm/16nm节点之前,半导体工艺在相当长的历史时期里有着“整代”和“半代”的差别。
    在戈登·摩尔提出著名的摩尔定律后,半导体产业一直坚持以18个月为周期升级半导体工艺。直观结果是,制程演进一直在以大约0.7的倍数逐级缩减,如1000nm->700nm->500nm->350nm->250nm等。
    而在制程迈过180nm节点后,台积电等代工厂提出了一种相比Intel的制程缩减0.9倍的工艺。这种工艺可以在不对产线进行大改的同时,提供1.24倍电路密度的芯片。Intel对此等技术非常不感冒,还为其挂上了半代工艺的名号。
    自此,Intel和IBM制造技术联盟(包括三星和GF等)依然严格按着180nm->130nm->90nm->65nm->45nm->32nm->22nm的步调前行(三星和GF在32nm后转向28nm),而台积电等半导体晶圆代工厂则走上了150nm->110nm->80nm->55nm->40nm->28nm->20nm的路线。

                                   
    登录/注册后可看大图
    制程演进

    不过当半导体工艺继续向前演进时,由于随着晶体管尺寸逐渐缩小至接近物理极限,在各种物理定律的束缚下,半导体工厂如同戴着镣铐跳舞,因此在几家厂商纷纷出现“异常状况”:本应属于整代工艺的16nm制程被台积电所用,Intel的14nm制程字面上却应该属于半代工艺的范畴。再接下来,几家则不约而同的选择了10nm->7nm->5nm的路线,整代和半代的区别自此成为历史。
    也正是因为这个原因,半导体厂商们进军7nm制程的道路并不顺利,还需要掀翻“光刻”、“晶体管架构”和“沟道材料”三座大山。


    工欲善其事,先搞光刻机

    作为半导体工艺中最具代表性的,光刻技术可称为现代集成电路上最大的难题,没有之一。
    所谓光刻其实很好理解,就是让光通过掩膜投射到涂抹了光刻胶的硅片上,将电路构造印在上面,类似于“投影描图”,只是描图的不是人手,而是机器,照射图样的也不再是可见光,而是紫外线。

                                   
    登录/注册后可看大图
    光刻车间

    目前半导体生产中使用的是波长193nm的深紫外(DUV)光刻。实际上,在制程发展到130nm之前,人们就曾指出193nm深紫外光会发生严重的衍射现象而无法继续使用,需要换用波长为13.5nm的极紫外(EUV)光刻才能继续缩小半导体工艺。
    EUV的研发始于20世纪90年代,最早希望在90nm制程节点投入应用,然而EUV光刻机一直达不到正式生产的要求。无奈之下,人们只能通过沉浸式光刻、多重曝光等手段,将DUV一路推进到了10nm阶段。
    目前ASML的EUV光刻机使用40对蔡司镜面构成光路,每个镜面的反光率为70%。这也就是说,EUV光束通过该系统中的每一对镜面时都会减半,在经过40对镜面反射后,只有不到2%的光线能投射到晶元上。

                                   
    登录/注册后可看大图
    ASML光刻机光路示意

    到达晶圆的光线越少,光刻所需的曝光时间就越长,相应的生产成本也就越高。为了抵消镜面反射过程中的光能损耗,EUV光源发出的光束必须足够强,这样才能与现在非常成熟的DUV光刻技术比拼时间成本。
    但是多年以来,光照亮度的提升始终未能达到人们的预期,ASML的EUV产品市场负责人Hans Meiling曾表示,人们严重低估了EUV的难度。正在实验中的EUV光源焦点功率刚刚达到250瓦,可以支撑机器每小时处理125个晶片,效率仅有现今DUV的一半。

                                   
    登录/注册后可看大图

    如果再加上价格和能耗,EUV取代DUV还会更加艰难。最新的EUV光刻机价格超过1亿欧元,是DUV光刻机价格的二倍有余,且使用EUV光刻机进行批量生产时会消耗1.5兆瓦的电力,远超现有的DUV光刻机。
    ASML方面表示,EUV光刻设备尚未彻底准备完成,最快也要到2019年才能应用于正式生产,因此几大半导体代工厂均在DUV+多重曝光技术上继续深挖,以求撑过EUV光刻机的真空期。


    全新晶体管架构和沟道材料

    通过DUV+多重曝光或EUV光刻缩小栅极宽度,进而刻画出更小的晶体管,只是实现7nm的关键要素之一。随着半导体工艺的发展,半导体沟道上的“门”会在尺寸进入亚原子级后变得极不稳定,这需要换用全新晶体管架构和沟道材料来解决。

                                   
    登录/注册后可看大图

    根据三星在CSTIC大会的报告,GAAFET(Gate All Around)是7nm制程节点上最好的选择。GAAFET是一个周边环绕着gate的FinFET,和目前垂直使用fin的FinFET不同,GAAFET的fin设计在旁边,能够提供比普通FinFET更好的电路特性。

                                   
    登录/注册后可看大图

    此外在进入7nm工艺时,半导体中连接PN结的沟道材料也必须要作改变。由于硅的电子迁移率为1500c㎡/Vs,而锗可达3900c㎡/Vs,同时硅器件的运行电压是0.75~0.8V,而锗器件仅为0.5V,因而锗在某一时期曾被认为是MOSFET晶体管的首选材料,IBM实验室的第一块7nm芯片使用的就是Ge-Si材料。
    IMEC(微电子研究中心)对新的掺锗材料进行了研究,筛选出两种可用于7nm的沟道材料:一种是由80%锗组成的PFET,另一种是25%到50%混合锗的FET或0到25%混合锗的NFET。

                                   
    登录/注册后可看大图

    但是近来,III-V族材料开始受到厂商的更多关注。III-V族化合物半导体拥有更大的能隙和更高的电子迁移率,可以让芯片承受更高的温度并运行在更高的频率上。且现有硅半导体工艺中的很多技术都可以应用到III-V族材料半导体上,因此III-V族材料也被视为取代硅的理想材料。


    7nm群英会

    了解了3大技术难题后,我们来看看几大半导体代工厂分别如何部署7nm制程节点。


    三星

    作为芯片代工行业的后来者,三星是“全球IBM制造技术联盟”中激进派的代表,早早就宣布了7nm时代将采用EUV。今年4月,三星刚刚宣布已经完成了7nm新工艺的研发,并成功试产了7nm EUV晶元,比原进度提早了半年。
    据日本PC WATCH网站上後藤弘茂的分析,三星7nm EUV的特征尺寸为44nm36nm(Gate PitchMetal Pitch),仅为10nm DUV工艺的一半左右。

                                   
    登录/注册后可看大图

    除了一步到位的7nm EUV外,三星还规划了一种8nm制程。这个制程实际上是使用DUV光刻+多重曝光生产的7nm制程,继承所有10nm工艺上的技术和特性。
    由于DUV光刻的分辨率较差,因而芯片的电气性能不如使用7nm EUV,所以三星为其商业命名为8nm。从这一点来看,8nm相比现有的10nm,很可能在晶体管密度、性能、功耗等方面做出了终极的优化,基本上可看做深紫外光刻下的技术极限了。

                                   
    登录/注册后可看大图
    DUV和EUV光刻分辨率对比

    此外,三星在7nm EUV之后,还规划了使用第二代EUV光刻技术的6nm制程,它和8nm同样是商业命名,属于7nm EUV制程的加强版,电气性能会更好。
    根据三星的路线,三星将于今年下半年试产7nm EUV晶元,大规模投产时间为2019年秋季。8nm制程大约在2019年第一季度登场,而6nm制程应该会在2020年后出现。


    台积电

    相比三星直接引入EUV光刻的激进,台积电在7nm上选择了求稳路线,并没有急于进入极紫外光刻时代。台积电表示将继续使用DUV光刻,利用沉浸式光刻和多重曝光等技术平滑进入7nm时代,然后再转换到EUV光刻。
    台积电使用DUV光刻的第一代7nm FinFET已经在2017年第二季度进入试产阶段。与目前的10nm FinFET制程相比,7nm FinFET将可在晶体管数量的情况下使芯片尺寸37%,或在电路复杂度相同的情况下降低40%的功耗。

                                   
    登录/注册后可看大图

    在接下来的第二代7nm FinFET+制程上,台积电将开始使用EUV光刻。针对EUV优化的布线密度可带来约10~20%的面积减少,或在电路复杂度相同的情况下,相比7nm FinFET再降低10%的功耗。
    而根据後藤弘茂的分析,台积电7nm DUV的特征尺寸介于台积电10nm FinFET和三星7nm EUV之间,Metal Pitch特征尺寸40nm,Gate Pitch特征尺寸尚不明确,但必定小于10nm时的66nm。

                                   
    登录/注册后可看大图

    此外,与完全使用DUV工具制造的芯片相比,使用EUV光刻生产芯片的周期也将缩短,台积电计划在2018年第二季度开始试产7nm FinFET+晶元。


    GF

    GF此前曾是AMD自家的半导体工厂,后由于AMD资金问题而拆分独立。GF同样属于IBM“全球IBM制造技术联盟”的一员,其半导体工艺和三星同宗同源。然而GF在28nm、14nm两个节点上都遇到了重大技术难题,不得不向“后来者”三星购买生产技术。
    介于此,GF在14nm之后决定放弃10nm节点,直接向7nm制程进军。虽然这个决策稍显激进,但GF也明白步子大了容易扯到啥的道理,决定在光刻技术上稳中求进,使用现有的DUV光刻技术实现第一代7nm工艺的制造,随后再使用EUV光刻进行两次升级迭代。

                                   
    登录/注册后可看大图

    去年7月曾报道过GF名为7LP的7nm DUV制程细节,据其在阿尔伯尼纽约州立大学理工学院负责评估多重光刻技术的George Gomba以及其他IBM的同事透露,GF将在第一代7nm DUV产品上,使用四重光刻法。
    相比之前的14nm LPP制程,7LP制程在功率和晶体管数量相同的前提下,可以带来40%的效率提升,或者在频率和复杂性相同的情况下,将功耗降低60%。但受限于四重光刻这一复杂流程,GF表示根据不同应用场景,7LP只能将芯片功耗降低30~45%。

                                   
    登录/注册后可看大图

    从後藤弘茂分析中可以看到,GF的7nm DUV特征尺寸为56nm40nm(Gate PitchMetal Pitch),应当与台积电7nm DUV的基本相当。而7nm EUV的特征尺寸为44nm*36nm,与三星7nm EUV完全一致(毕竟同源)。

                                   
    登录/注册后可看大图

    不过在EUV的部署上,GF尚存在一些阻碍。据了解,目前ASML提供的保护膜仅适用于每小时85个晶片的生产率(WpH),而GF今年的计划是达到125WpH,这意味着现有的保护膜无法应对量产所需的强大光源。
    目前,GF尚未透露将于何时开始使用EUV光刻,只说要等到“准备就绪”以后,不过看起来难以在2018年以前准备就绪。因此业界普遍猜测GF最早也要到2019年才能使用EUV光刻生产芯片。


    Intel:我不是针对谁……

    Intel作为全球最大的半导体企业,在半导体工艺方面一直保持着领先地位,并且引领了大量全新技术的发展。不过近几年,Intel半导体工艺的发展速度似乎逐渐慢了下来,比如14nm工艺竟然用了三代,10nm工艺也被竞争对手抢先。
    实际上,三星和台积电在进入16/14nm节点后,在制程上常使用一些商业命名,比如上面提到的三星7nm制程,优化一下就变成了6nm。而Intel的14nm制程虽然历经两次优化,却只是以14nm、14nm+和14nm++来命名,二者已经不存在直接的可比性。
    由于晶体管制造的复杂性,每代晶体管工艺中有面向不同用途的制造技术版本,不同厂商的代次之间统计算法也完全不同,单纯用代次来对比是不准确的。目前业内常用晶体管密度来衡量制程水平,实际上,Intel最新10nm制程的晶体管密度甚至反而要比三星、台积电的7nm制程更高。
    根据Intel公布的晶体管密度表格,其45nm制程的晶体管密度约为3.3MTr/mm²(百万晶体管每平方毫米),32nm为7.5MTr/mm²,22nm为15.3MTr/mm²,上升倍数大约为2.1倍。但是14nm时晶体管密度大幅提升了2.5倍,为37.5MTr/mm²,10nm更是比14nm提升了2.7倍之多,达到100.8MTr/mm²。

                                   
    登录/注册后可看大图

    而根据後藤弘茂的分析,如果将Intel、台积电、三星和GF近些年制程的特征尺寸放在一起对比,也可以看出Intel的14nm制程确实要优于三星和GF的14nm LPP以及台积电的16nm FinFET,仅略输于三星早期的10nm制程。
    Intel的10nm制程则更是全面胜过台积电和三星的10nm制程,甚至比台积电和GF的第一批7nm DUV都要更好。虽然不如三星和GF的第二批7nm EUV制程,但Intel肯定也会深挖10nm制程,第二代10nm赶超三星和GF的7nm EUV也不是不可能。

                                   
    登录/注册后可看大图

    国外网站Semiwiki日前也讨论到了三星的10nm、8nm以及7nm制程的情况,其中10nm制程的晶体管密度是55.5MTr/mm²,8mm是64.4MTr/mm²,7nm也不过101.23MTr/mm²,堪堪超过Intel 10nm制程一点点。


    下一站,5nm

    从眼下7nm制程的种种困难可以看出,在5nm及以后的节点上,晶体管的结构很有可能仍然需要进行改进,目前比较受关注的是一种类似罗汉塔式的Nanosheet晶体管。
    Nanosheet是“IBM联盟”在2017年6月的Symposia on VLSI Technology and Circuits半导体会议上提出的,其晶体管为“将FinFET 90度放倒”的扁平堆栈化结构。
    笔者在查看了後藤弘茂的分析后粗略得知,IBM联盟展示了沿着从源级(source)到漏级(drain)方向90度切开的晶体管横截面,可以看到FinFET工艺上Channel是直立的,就如同鳍片的造型,将这些鳍片90度放到后,就变成了Nanowire的形状。

                                   
    登录/注册后可看大图

    有趣的是,本来FinFET就是将原来的Planer型晶体管90度“放倒”而成。Planer型晶体管是在平面内生成,在其上面紧接着生成栅极(gate)。
    而FinFET将平面的Channel给90度立了起来,这样变成三个方向都有栅极的三重门(Tri-gate)电路。Channel基本上脱离了硅基板,不仅抑制了电子迁移,而且增加了栅极的长度。

                                   
    登录/注册后可看大图

    而与FinFET的三面栅极不同,Nanosheet是4面360度全包,可以进一步抑制电子迁移,提高栅极长度,加强电子驱动能力。如果都是三鳍片结构,Nanosheet栅极长度是FinFET的1.3倍。
    Nanosheet在良品率方面也比FinFET更有优势。垂直Channel的FinFET更依靠曝光技术,而水平Channel的Nanosheet更依靠薄膜生成技术。根据实验室的说法,垂直加工比水平加工在半导体制程上更加困难。

                                   
    登录/注册后可看大图

    但是正如7nm有三座大山一样,5nm制程要解决的也不只有晶体管架构,还有全新布线层材料等难点的存在。根据几家半导体厂商的roadmap,5nm制程被暂定在2020年上马,至少Nanosheet是以此为目标的。


    硅半导体的夕阳红

    如同过去一样,摩尔定律的命运不仅取决于芯片工艺的尺寸,也取决于物理学家和工程师,对生产出的晶体管和电路可以改善到何种程度。三星、台积电和GF的技术进步,让我们看到了7nm制程时代的发展方向。即便需要克服大量物理与工程难题,集成电路产业也在一步一步向前走。
    不过当未来半导体工艺进一步发展到5nm甚至3nm后,电路中最窄的地方甚至只有十几个原子的厚度,届时硅半导体工艺可能真的要面临极限,如今几方竞相角逐7nm制程的情景完全可以说是硅半导体的夕阳红。
    在这样的情况下,我们希望这些半导体企业携起手来,在未来的半导体产业上继续努力,继续遵循着摩尔定律的脚步,将人类的计算能力和制造能力推向一个全新的高峰。
    回复

    使用道具 举报

    该用户从未签到

    11

    主题

    1240

    回帖

    2300

    积分

    二级逆天

    积分
    2300

    终身成就奖社区居民

    QQ
    发表于 2018-6-24 08:54:25 | 显示全部楼层
    回复

    使用道具 举报

    该用户从未签到

    18

    主题

    1087

    回帖

    2196

    积分

    二级逆天

    积分
    2196

    终身成就奖金点子奖优秀斑竹奖

    QQ
    发表于 2018-6-24 09:09:29 | 显示全部楼层
    回复

    使用道具 举报

    该用户从未签到

    18

    主题

    1087

    回帖

    2196

    积分

    二级逆天

    积分
    2196

    终身成就奖金点子奖优秀斑竹奖

    QQ
    发表于 2018-6-24 09:09:59 | 显示全部楼层
    回复

    使用道具 举报

  • TA的每日心情
    开心
    2024-8-2 17:14
  • 签到天数: 1 天

    [LV.1]初来乍到

    477

    主题

    4723

    回帖

    1万

    积分

    三级逆天

    积分
    10001

    社区居民社区劳模忠实会员原创达人终身成就奖优秀斑竹奖

    QQ
    发表于 2018-6-24 09:49:57 | 显示全部楼层
    回复

    使用道具 举报

    该用户从未签到

    635

    主题

    6403

    回帖

    1万

    积分

    三级逆天

    -

    积分
    13163

    忠实会员社区居民社区劳模原创达人最爱沙发终身成就奖特殊贡献奖原创先锋奖优秀斑竹奖金点子奖

    QQ
    发表于 2018-6-24 10:32:09 | 显示全部楼层
    -
    回复

    使用道具 举报

    该用户从未签到

    18

    主题

    2467

    回帖

    0

    积分

    二级逆天

    积分
    0

    终身成就奖优秀斑竹奖特殊贡献奖

    QQ
    发表于 2018-6-24 10:33:27 | 显示全部楼层
    回复

    使用道具 举报

  • TA的每日心情
    郁闷
    5 小时前
  • 签到天数: 19 天

    [LV.4]偶尔看看III

    12

    主题

    593

    回帖

    2715

    积分

    PADS-2021国庆特训班

    积分
    2715

    终身成就奖社区居民宣传大使奖优秀斑竹奖幽默大师奖新人进步奖灌水天才奖特殊贡献奖

    发表于 2018-6-24 11:02:44 | 显示全部楼层
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    每日签到,有金币领取。


    Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

    本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

    ( 闽ICP备2024076463号-1 ) 论坛技术支持QQ群171867948 ,论坛问题,充值问题请联系QQ1308068381

    平平安安
    TOP
    快速回复 返回顶部 返回列表