我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 1311|回复: 0

内嵌ARM核FPGA芯片EPXAl0及其在图像驱动应用 - 消费电子 - 电

[复制链接]

该用户从未签到

1万

主题

1424

回帖

3万

积分

管理员

积分
32032

社区居民最爱沙发原创达人社区明星终身成就奖优秀斑竹奖宣传大使奖特殊贡献奖

QQ
发表于 2013-3-30 09:36:30 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区

您需要 登录 才可以下载或查看,没有账号?立即注册

×
随着亚微米技术的发展,FPGA芯片密度不断增加,并以强大的并行计算能力和方便灵活的动态可重构性,被广泛地应用于各个领域。但是在复杂算法的实现上,FPGA却远没有32位RISC处理器灵活方便,所以在设计具有复杂算法和控制逻辑的系统时,往往需要RISC
和FPGA结合使用。这样,电路设计的难度也就相应大大增加。随着第四代EDA开发工具的使用,特别是在IP核产业的迅猛发展下产生的SOPC技术的发展,使嵌入RISC的通用及标准的FPGA器件呼之欲出。单片集成的RISC处理器和FPGA大大减小了硬件电路的复杂性和体积,同时也降低了功耗、提高了系统可靠性。Altera公司的EPXAl0芯片就是应用SOPC技术,集高密度逻辑(FPGA)、存储器(SRAM)及嵌入式处理器(ARM)于单片可编程逻辑器件上,实现了速度与编程能力的完美结合。本文所介绍的图像驱动和处理系统正是应用了EPXAl0的这些特点,充分发挥了FPGA逻辑控制实现简单、对大量数据做简单处理速度快的优势以及ARM软件编程灵活的特点。

1 内嵌ARM核的FPGA芯片EPXA10及其主要特点
EPXAl0单片集成了ARM核、高密度的FPGA、存储器及接口和控制模块,不仅简化了ARM与FPGA之间的通讯,也使片外扩展存储器以及和外设通讯变得相对简单;同时通过在FPGA中嵌入各种IP核和用户控制逻辑可以实现各种接口和控制任务。这样的高度集成化不仅大大加快了ARM与片内各种资源的通讯速度,而且减小了硬件电路的复杂性、体积和功耗,真正实现了SOPC。
EPXAl0内部结构框图如图1所示式,主要分为嵌入处理器和FPGA两部分。

1.1嵌入式微处理器ARM922T
EPXAl0嵌入式处理器部分集成了业界领先的32位ARM处理器(ARM922T),工作频率可达200MHz;支持32位ARMv4T指令集和16位Thumb扩展指令集;具有全性能的内存管理单元以及8K的指令缓存和8K数据缓存,以支持实时操作系统(RTOS)、C语言和汇编语言。

1.2高密度的FPGA
EPXAl0片内FPGA部分具有1000000门可编程逻辑、3MB的内置RAM和512个可供用户使用的I/0管脚,可以通过嵌入各种IP核实现各种标准工业接口(如PCI、USB等)。

1.3先进的存储支持
EPXAl0嵌入式处理器部分集成了256KB单口SRAM和128KB双口SRAM;同时集成了两个先进的存储支持:(1)SDRAM控制器,用于控制单倍速/双倍速SDRAM。SDRAM的各种工作状态是依据信号线上提供的不同控制时序来确定的,实现起来非常复杂。有了SDRAM控制器的支持,只需要在Altera公司提供的EDA开发软件Quartus II中设置好SDRAM工作所需的各种参数,就可以按照直接给出指令、地址和数据的方式对SDRAM进行操作,控制器会自动将各种指令转化成SDRAM所需的工作时序,大大降低了对SDRAM的控制难度。(2)扩展总线接口(EBl),可外接4个存储设备,如闪速存储器、SRAM等,总容量高达128MB。其中EBI接口0外接闪速存储器,用于存储用户的软件、硬件设计代码。

1. 4方便的接口模块
EPXAl0嵌入式处理器部分嵌入了串口通讯模块(UART),可以不用编程直接实现ARM与超级终端之间的串行通讯,实时监视软件的运行情况。如果要实现计算机与ARM之间的数据传递存储,只需用户编写基于VC++语言的串口通讯程序,这需要用到Microsoft公司提供的MSComm串行通讯控件。

1.5灵活的启动方式
EPXAl0共有两种启动方式:(1)从ARM启动。这种启动方式需要将设计下载到片外闪速存储器中,而且设计中必须包含对ARM的应用。启动时ARM为主动,配置各种寄存器及FPGA,执行软件代码。(2)从FPGA启动。这种启动方式需要将设计下载到片外E2PROM中,而且设计中可以只包含FPGA部分的应用。启动时PP-GA为主动,ARM处于复位状态,配置完成后,如果有对ARM的应用,则ARM解除复位,执行软件代码;反之,ARM一直处于复位状态。

2 EPXAl0的工作方式

EPXAl0嵌入式处理器部分提供了两条32位AMBA微控制器总线AHB1、AHB2,分别用于片内各种资源的通讯,如图1所示。基于AHB1、AHB2总线,EPXAl0的工作方式大致可分为三种:(1)ARM作为AHB1总线的主控,直接访问AHB1总线的从属资源,包括SDRAM控制器、片上SRAM、中断控制器等。(2)ARM作为AHB1总线的主控,通过AHBl-2桥访问AHB2总线上的从属资源,包括UART、E-BI、SRAM、Stripe-To-PLD桥等,同时通过Stripe-To-PLD桥对FPGA进行访问和控制。(3)FPGA通过AHB2的总线主控PLD-To-Stripe桥访问AHB2总线上的从属资源,包括SRAM、SDRAM控制器、UART等。
EPXAl0片内集成了软件可编程锁相环路(PLL),为微控制器总线及SDRAM控制器提供了灵活精确的时钟基准。

3 EPXAl0在图像驱动和处理方面的应用

本文所述的图像驱动和处理系统主要利用FPGA逻辑控制实现简单、对大量数据做简单处理速度快以及ARM软件编程灵活的特点,系统框图如图2所示。在芯片FPGA部分,构造了CMOS驱动模块,驱动CMOS图像传感器使之能够采集图像数据。然后图像数据经数据接收模块存入片外SDRAM中,并经串口传人PC机,要将图像数据在PC机中显示成图像,还需编写基于CDib类的图像显示程序;同时将图像数据经芯片ARM部分的图像处理算法(本系统采用Sobel算子)处理,处理后的图像数据才能经串口传给PC机进行显示。为了验证基于ARM的图像处理算法实现的正确性,还将这一算法在PC机中进行了实现,最后针对同一幅图像,将两种实现的结果进行了比较。


3.1图像的驱动

3.1.1 CMOS图像传感器的驱动

要使CMOS图像传感器成像,必须设计正确。的驱动时序,包括行同步、列同步、场同步及曝光时间设定等时序。利用FPGA逻辑编程简单的特点,用硬件描述语言Verilog HDL编程,可在FPGA中实现CMOS图像传感器的驱动时序,该驱动时序的仿真结果如图3所示。图中,ld_y为行选通信号;ld_x为列选通信号;cal为场选通信号;clk_adc为内部A/D转换器所需的时钟;addr为行列地址线;sys_reset为曝光时间设定信号;s和r为内部放大器选通信号。


3.1.2图像的采集

CMOS图像传感器输出的信号为数字信号(即数字图像数据),所以图像的采集要通过FPGA中的数据接收模块将图像数据保存到片外SDRAM中。数据接收模块状态机如图4所示。标志Flag为1,开始采集数据。因为CMOS图像传感器在每个A/D转换时钟周期输出一个数据(如图3所示),接收模块也相应地设计成一个时钟接收周期接收一个数据(Burst状态),这样也就发挥了FPGA对大量数据处理速度快的优势。



3.1.3图像的显示

ARM将SDRAM中的图像数据经串口传给计算机,在计算机中用VC++语言编写串口协议和图像显示程序,将CMOS图像传感器采集到的图像显示在屏幕上,以便于监测验证。

3.2图像的处理

本系统采用的图像处理算法基于Sobel边缘检测算子。图像的边缘是由灰度不连续性所反映的,是图像的最基本信息。边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,也包括方向的确定,大多数使用基于方向导数掩模求卷积的方法。就sobel算子而言,如图5所示,采用了两个3×3卷积核形成边缘算子模板,紧邻中心像素的像素有4个,和中心像素成斜对角的像素也有4个,距离中心像素近的模板值的系数为2,成斜对角的比较远,所以其系数为1,该系数反映了这样一点:邻域对当前像素的灰度梯度的影响程度越近影响越大,越远影响越小。图像中的每个点都用这两个核做卷积,一个核对垂直边缘响应最大,而另一个核对水平边缘响应最大,两个卷积的最大值作为该点的输出位,反映了当前位置灰度梯度(图像边缘)的主要方向和大小。运算结果反映了一幅边缘幅度图像。


因为拍摄的图像为1024×1024,采用的Sobel算子为3x3模板,所以图像周边的一圈像素(第1行、第1024行、第1列、第1024列)保持原灰度值。在图像的第2行2列到1023行1023列的范围内,用图5所示的算子模板进行扫描计算,即当前像素和与当前像素相邻的8个像素,分别与模板中位置相应的9个系数相乘,累加这9个乘积结果,就得到针对某一方向的灰度梯度。比较两个方向的计算结果,取最大者作为当前位置的灰度梯度。图7为图6经过Sobel算子进行边缘提取后得到的图像。该算法在ARM中是基于C语言实现的,体现了ARM软件编程灵活的特点。

3.3试验结果

图6是成功驱动CMOS图像传感器后拍摄的景物图像,可见图像非常清晰。本文分别针对Soble算子进行了基于PC机和基于ARM的实现,图7为图6经过ARM中的Sobel算子的边缘提取结果,图8为图6经过PC机中Sobel算子的边缘提取结果,图9为图7和图8逐像素的比较结果。可见两种实现方法得到的结果完全一致,说明了基于ARM的Sobel算子的实现是正确的。

上述图像驱动和处理系统如果仅用FPGA来实现,算法部分的实现会比较复杂;如果仅用ARM来实现,驱动时序的设计也会非常困难。而采用内嵌ARM核的FPGA芯片EPXAl0,单片就实现了上述系统,大大减小了设计的难度和电路的复杂性,同时也减小了硬件电路的体积和功耗,在系统小型化方面有着独特的优势。由于EPXAl0集成了先进的ARM922T处理器器以及高密度的FPGA,所以在不增加体积和改进硬件电路的情况下,可以实现更加复杂的图像处理算法和硬件控制逻辑设计,具有很强的系统扩展潜力。这种嵌入式方案必将成为集成电路的发展趋势,将会在未来较短的时间里得到快速的发展。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

每日签到,有金币领取。


Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

( 闽ICP备2024076463号-1 ) 论坛技术支持QQ群171867948 ,论坛问题,充值问题请联系QQ1308068381

平平安安
TOP
快速回复 返回顶部 返回列表