我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 5751|回复: 1

RK3288  WIFI BCM驱动

[复制链接]

该用户从未签到

1448

主题

400

回帖

4162

积分

二级逆天

积分
4162

社区居民社区明星忠实会员宣传大使奖终身成就奖特殊贡献奖

QQ
发表于 2015-7-7 09:25:33 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区

您需要 登录 才可以下载或查看,没有账号?立即注册

×
/*
* Broadcom BCMSDH to SPI Protocol Conversion Layer
*
* Copyright (C) 1999-2010, Broadcom Corporation
*
*      Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
*      As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module.  An independent module is a module which is not
* derived from this software.  The special exception does not apply to any
* modifications of the software.
*
*      Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: bcmsdspi.c,v 1.14.4.2.4.4.6.5 2010/03/10 03:09:48 Exp $
*/

#include <typedefs.h>

#include <bcmdevs.h>
#include <bcmendian.h>
#include <bcmutils.h>
#include <osl.h>
#include <siutils.h>
#include <sdio.h>        /* SDIO Device and Protocol Specs */
#include <sdioh.h>        /* SDIO Host Controller Specification */
#include <bcmsdbus.h>        /* bcmsdh to/from specific controller APIs */
#include <sdiovar.h>        /* ioctl/iovars */

#include <pcicfg.h>


#include <bcmsdspi.h>
#include <bcmspi.h>

#include <proto/sdspi.h>

#define SD_PAGE 4096

/* Globals */

uint sd_msglevel = SDH_ERROR_VAL;
uint sd_hiok = FALSE;        /* Use hi-speed mode if available? */
uint sd_sdmode = SDIOH_MODE_SPI;        /* Use SD4 mode by default */
uint sd_f2_blocksize = 512;    /* Default blocksize */

uint sd_divisor = 2;        /* Default 33MHz/2 = 16MHz for dongle */
uint sd_power = 1;        /* Default to SD Slot powered ON */
uint sd_clock = 1;        /* Default to SD Clock turned ON */
uint sd_crc = 0;        /* Default to SPI CRC Check turned OFF */
uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */

uint sd_toctl = 7;

/* Prototypes */
static bool sdspi_start_power(sdioh_info_t *sd);
static int sdspi_set_highspeed_mode(sdioh_info_t *sd, bool HSMode);
static int sdspi_card_enablefuncs(sdioh_info_t *sd);
static void sdspi_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count);
static int sdspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg,
                           uint32 *data, uint32 datalen);
static int sdspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
                              int regsize, uint32 *data);
static int sdspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
                               int regsize, uint32 data);
static int sdspi_driver_init(sdioh_info_t *sd);
static bool sdspi_reset(sdioh_info_t *sd, bool host_reset, bool client_reset);
static int sdspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
                          uint32 addr, int nbytes, uint32 *data);
static int sdspi_abort(sdioh_info_t *sd, uint func);

static int set_client_block_size(sdioh_info_t *sd, int func, int blocksize);

static uint8 sdspi_crc7(unsigned char* p, uint32 len);
static uint16 sdspi_crc16(unsigned char* p, uint32 len);
static int sdspi_crc_onoff(sdioh_info_t *sd, bool use_crc);

/*
*  Public entry points & extern's
*/
extern sdioh_info_t *
sdioh_attach(osl_t *osh, void *bar0, uint irq)
{
    sdioh_info_t *sd;

    sd_trace(("%s\n", __FUNCTION__));
    if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
        sd_err(("sdioh_attach: out of memory, malloced %d bytes\n", MALLOCED(osh)));
        return NULL;
    }
    bzero((char *)sd, sizeof(sdioh_info_t));
    sd->osh = osh;

    if (spi_osinit(sd) != 0) {
        sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
        MFREE(sd->osh, sd, sizeof(sdioh_info_t));
        return NULL;
    }

    sd->bar0 = (uintptr)bar0;
    sd->irq = irq;
    sd->intr_handler = NULL;
    sd->intr_handler_arg = NULL;
    sd->intr_handler_valid = FALSE;

    /* Set defaults */
    sd->sd_blockmode = FALSE;
    sd->use_client_ints = TRUE;
    sd->sd_use_dma = FALSE;    /* DMA Not supported */

    /* Haven't figured out how to make bytemode work with dma */
    if (!sd->sd_blockmode)
        sd->sd_use_dma = 0;

    if (!spi_hw_attach(sd)) {
        sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
        spi_osfree(sd);
        MFREE(sd->osh, sd, sizeof(sdioh_info_t));
        return NULL;
    }

    if (sdspi_driver_init(sd) != SUCCESS) {
        if (sdspi_driver_init(sd) != SUCCESS) {
            sd_err(("%s:sdspi_driver_init() failed()\n", __FUNCTION__));
            spi_hw_detach(sd);
            spi_osfree(sd);
            MFREE(sd->osh, sd, sizeof(sdioh_info_t));
            return (NULL);
        }
    }

    if (spi_register_irq(sd, irq) != SUCCESS) {
        sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
        spi_hw_detach(sd);
        spi_osfree(sd);
        MFREE(sd->osh, sd, sizeof(sdioh_info_t));
        return (NULL);
    }

    sd_trace(("%s: Done\n", __FUNCTION__));
    return sd;
}

extern SDIOH_API_RC
sdioh_detach(osl_t *osh, sdioh_info_t *sd)
{
    sd_trace(("%s\n", __FUNCTION__));

    if (sd) {
        if (sd->card_init_done)
            sdspi_reset(sd, 1, 1);

        sd_info(("%s: detaching from hardware\n", __FUNCTION__));
        spi_free_irq(sd->irq, sd);
        spi_hw_detach(sd);
        spi_osfree(sd);
        MFREE(sd->osh, sd, sizeof(sdioh_info_t));
    }

    return SDIOH_API_RC_SUCCESS;
}

/* Configure callback to client when we recieve client interrupt */
extern SDIOH_API_RC
sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
{
    sd_trace(("%s: Entering\n", __FUNCTION__));

    sd->intr_handler = fn;
    sd->intr_handler_arg = argh;
    sd->intr_handler_valid = TRUE;

    return SDIOH_API_RC_SUCCESS;
}

extern SDIOH_API_RC
sdioh_interrupt_deregister(sdioh_info_t *sd)
{
    sd_trace(("%s: Entering\n", __FUNCTION__));

    sd->intr_handler_valid = FALSE;
    sd->intr_handler = NULL;
    sd->intr_handler_arg = NULL;

    return SDIOH_API_RC_SUCCESS;
}

extern SDIOH_API_RC
sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
{
    sd_trace(("%s: Entering\n", __FUNCTION__));

    *onoff = sd->client_intr_enabled;

    return SDIOH_API_RC_SUCCESS;
}

#if defined(DHD_DEBUG)
extern bool
sdioh_interrupt_pending(sdioh_info_t *sd)
{
    return 0;
}
#endif

uint
sdioh_query_iofnum(sdioh_info_t *sd)
{
    return sd->num_funcs;
}

/* IOVar table */
enum {
    IOV_MSGLEVEL = 1,
    IOV_BLOCKMODE,
    IOV_BLOCKSIZE,
    IOV_DMA,
    IOV_USEINTS,
    IOV_NUMINTS,
    IOV_NUMLOCALINTS,
    IOV_HOSTREG,
    IOV_DEVREG,
    IOV_DIVISOR,
    IOV_SDMODE,
    IOV_HISPEED,
    IOV_HCIREGS,
    IOV_POWER,
    IOV_CLOCK,
    IOV_CRC
};

const bcm_iovar_t sdioh_iovars[] = {
    {"sd_msglevel",    IOV_MSGLEVEL,     0,    IOVT_UINT32,    0 },
    {"sd_blockmode", IOV_BLOCKMODE,    0,    IOVT_BOOL,    0 },
    {"sd_blocksize", IOV_BLOCKSIZE, 0,    IOVT_UINT32,    0 }, /* ((fn << 16) | size) */
    {"sd_dma",    IOV_DMA,    0,    IOVT_BOOL,    0 },
    {"sd_ints",    IOV_USEINTS,    0,    IOVT_BOOL,    0 },
    {"sd_numints",    IOV_NUMINTS,    0,    IOVT_UINT32,    0 },
    {"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32,    0 },
    {"sd_hostreg",    IOV_HOSTREG,    0,    IOVT_BUFFER,    sizeof(sdreg_t) },
    {"sd_devreg",    IOV_DEVREG,    0,    IOVT_BUFFER,    sizeof(sdreg_t)    },
    {"sd_divisor",    IOV_DIVISOR,    0,    IOVT_UINT32,    0 },
    {"sd_power",    IOV_POWER,    0,    IOVT_UINT32,    0 },
    {"sd_clock",    IOV_CLOCK,    0,    IOVT_UINT32,    0 },
    {"sd_crc",    IOV_CRC,    0,    IOVT_UINT32,    0 },
    {"sd_mode",    IOV_SDMODE,    0,    IOVT_UINT32,    100},
    {"sd_highspeed",    IOV_HISPEED,    0,    IOVT_UINT32,    0},
    {NULL, 0, 0, 0, 0 }
};

int
sdioh_iovar_op(sdioh_info_t *si, const char *name,
               void *params, int plen, void *arg, int len, bool set)
{
    const bcm_iovar_t *vi = NULL;
    int bcmerror = 0;
    int val_size;
    int32 int_val = 0;
    bool bool_val;
    uint32 actionid;

    ASSERT(name);
    ASSERT(len >= 0);

    /* Get must have return space; Set does not take qualifiers */
    ASSERT(set || (arg && len));
    ASSERT(!set || (!params && !plen));

    sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));

    if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
        bcmerror = BCME_UNSUPPORTED;
        goto exit;
    }

    if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
        goto exit;

    /* Set up params so get and set can share the convenience variables */
    if (params == NULL) {
        params = arg;
        plen = len;
    }

    if (vi->type == IOVT_VOID)
        val_size = 0;
    else if (vi->type == IOVT_BUFFER)
        val_size = len;
    else
        val_size = sizeof(int);

    if (plen >= (int)sizeof(int_val))
        bcopy(params, &int_val, sizeof(int_val));

    bool_val = (int_val != 0) ? TRUE : FALSE;

    actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
    switch (actionid) {
    case IOV_GVAL(IOV_MSGLEVEL):
        int_val = (int32)sd_msglevel;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_MSGLEVEL):
        sd_msglevel = int_val;
        break;

    case IOV_GVAL(IOV_BLOCKMODE):
        int_val = (int32)si->sd_blockmode;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_BLOCKMODE):
        si->sd_blockmode = (bool)int_val;
        /* Haven't figured out how to make non-block mode with DMA */
        if (!si->sd_blockmode)
            si->sd_use_dma = 0;
        break;

    case IOV_GVAL(IOV_BLOCKSIZE):
        if ((uint32)int_val > si->num_funcs) {
            bcmerror = BCME_BADARG;
            break;
        }
        int_val = (int32)si->client_block_size[int_val];
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_BLOCKSIZE):
    {
        uint func = ((uint32)int_val >> 16);
        uint blksize = (uint16)int_val;
        uint maxsize;

        if (func > si->num_funcs) {
            bcmerror = BCME_BADARG;
            break;
        }

        switch (func) {
        case 0: maxsize = 32; break;
        case 1: maxsize = BLOCK_SIZE_4318; break;
        case 2: maxsize = BLOCK_SIZE_4328; break;
        default: maxsize = 0;
        }
        if (blksize > maxsize) {
            bcmerror = BCME_BADARG;
            break;
        }
        if (!blksize) {
            blksize = maxsize;
        }

        /* Now set it */
        spi_lock(si);
        bcmerror = set_client_block_size(si, func, blksize);
        spi_unlock(si);
        break;
    }

    case IOV_GVAL(IOV_DMA):
        int_val = (int32)si->sd_use_dma;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_DMA):
        si->sd_use_dma = (bool)int_val;
        break;

    case IOV_GVAL(IOV_USEINTS):
        int_val = (int32)si->use_client_ints;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_USEINTS):
        break;

    case IOV_GVAL(IOV_DIVISOR):
        int_val = (uint32)sd_divisor;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_DIVISOR):
        sd_divisor = int_val;
        if (!spi_start_clock(si, (uint16)sd_divisor)) {
            sd_err(("set clock failed!\n"));
            bcmerror = BCME_ERROR;
        }
        break;

    case IOV_GVAL(IOV_POWER):
        int_val = (uint32)sd_power;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_POWER):
        sd_power = int_val;
        break;

    case IOV_GVAL(IOV_CLOCK):
        int_val = (uint32)sd_clock;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_CLOCK):
        sd_clock = int_val;
        break;

    case IOV_GVAL(IOV_CRC):
        int_val = (uint32)sd_crc;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_CRC):
        /* Apply new setting, but don't change sd_crc until
         * after the CRC-mode is selected in the device.  This
         * is required because the software must generate a
         * correct CRC for the CMD59 in order to be able to
         * turn OFF the CRC.
         */
        sdspi_crc_onoff(si, int_val ? 1 : 0);
        sd_crc = int_val;
        break;

    case IOV_GVAL(IOV_SDMODE):
        int_val = (uint32)sd_sdmode;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_SDMODE):
        sd_sdmode = int_val;
        break;

    case IOV_GVAL(IOV_HISPEED):
        int_val = (uint32)sd_hiok;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_SVAL(IOV_HISPEED):
        sd_hiok = int_val;

        if (!sdspi_set_highspeed_mode(si, (bool)sd_hiok)) {
            sd_err(("Failed changing highspeed mode to %d.\n", sd_hiok));
            bcmerror = BCME_ERROR;
            return ERROR;
        }
        break;

    case IOV_GVAL(IOV_NUMINTS):
        int_val = (int32)si->intrcount;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_GVAL(IOV_NUMLOCALINTS):
        int_val = (int32)si->local_intrcount;
        bcopy(&int_val, arg, val_size);
        break;

    case IOV_GVAL(IOV_HOSTREG):
    {
        break;
    }

    case IOV_SVAL(IOV_HOSTREG):
    {
        sd_err(("IOV_HOSTREG unsupported\n"));
        break;
    }

    case IOV_GVAL(IOV_DEVREG):
    {
        sdreg_t *sd_ptr = (sdreg_t *)params;
        uint8 data;

        if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
            bcmerror = BCME_SDIO_ERROR;
            break;
        }

        int_val = (int)data;
        bcopy(&int_val, arg, sizeof(int_val));
        break;
    }

    case IOV_SVAL(IOV_DEVREG):
    {
        sdreg_t *sd_ptr = (sdreg_t *)params;
        uint8 data = (uint8)sd_ptr->value;

        if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
            bcmerror = BCME_SDIO_ERROR;
            break;
        }
        break;
    }


    default:
        bcmerror = BCME_UNSUPPORTED;
        break;
    }
exit:

    return bcmerror;
}

extern SDIOH_API_RC
sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
    SDIOH_API_RC status;
    /* No lock needed since sdioh_request_byte does locking */
    status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
    return status;
}

extern SDIOH_API_RC
sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
    /* No lock needed since sdioh_request_byte does locking */
    SDIOH_API_RC status;
    status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
    return status;
}

extern SDIOH_API_RC
sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
{
    uint32 count;
    int offset;
    uint32 foo;
    uint8 *cis = cisd;

    sd_trace(("%s: Func = %d\n", __FUNCTION__, func));

    if (!sd->func_cis_ptr[func]) {
        bzero(cis, length);
        return SDIOH_API_RC_FAIL;
    }

    spi_lock(sd);
    *cis = 0;
    for (count = 0; count < length; count++) {
        offset =  sd->func_cis_ptr[func] + count;
        if (sdspi_card_regread (sd, 0, offset, 1, &foo) < 0) {
            sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
            spi_unlock(sd);
            return SDIOH_API_RC_FAIL;
        }
        *cis = (uint8)(foo & 0xff);
        cis++;
    }
    spi_unlock(sd);
    return SDIOH_API_RC_SUCCESS;
}

extern SDIOH_API_RC
sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
{
    int status;
    uint32 cmd_arg;
    uint32 rsp5;

    spi_lock(sd);

    cmd_arg = 0;
    cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
    cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
    cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
    cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
    cmd_arg = SFIELD(cmd_arg, CMD52_DATA, rw == SDIOH_READ ? 0 : *byte);

    sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x\n", __FUNCTION__, rw, func, regaddr));

    if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
                                  SDIOH_CMD_52, cmd_arg, NULL, 0)) != SUCCESS) {
        spi_unlock(sd);
        return status;
    }

    sdspi_cmd_getrsp(sd, &rsp5, 1);
    if (rsp5 != 0x00) {
        sd_err(("%s: rsp5 flags is 0x%x func=%d\n",
                __FUNCTION__, rsp5, func));
        /* ASSERT(0); */
        spi_unlock(sd);
        return SDIOH_API_RC_FAIL;
    }

    if (rw == SDIOH_READ)
        *byte = sd->card_rsp_data >> 24;

    spi_unlock(sd);
    return SDIOH_API_RC_SUCCESS;
}

extern SDIOH_API_RC
sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
                   uint32 *word, uint nbytes)
{
    int status;

    spi_lock(sd);

    if (rw == SDIOH_READ)
        status = sdspi_card_regread(sd, func, addr, nbytes, word);
    else
        status = sdspi_card_regwrite(sd, func, addr, nbytes, *word);

    spi_unlock(sd);
    return (status == SUCCESS ?  SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
}

extern SDIOH_API_RC
sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
                     uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
{
    int len;
    int buflen = (int)buflen_u;
    bool fifo = (fix_inc == SDIOH_DATA_FIX);

    spi_lock(sd);

    ASSERT(reg_width == 4);
    ASSERT(buflen_u < (1 << 30));
    ASSERT(sd->client_block_size[func]);

    sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
             __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
             buflen_u, sd->r_cnt, sd->t_cnt, pkt));

    /* Break buffer down into blocksize chunks:
     * Bytemode: 1 block at a time.
     */
    while (buflen > 0) {
        if (sd->sd_blockmode) {
            /* Max xfer is Page size */
            len = MIN(SD_PAGE, buflen);

            /* Round down to a block boundry */
            if (buflen > sd->client_block_size[func])
                len = (len/sd->client_block_size[func]) *
                        sd->client_block_size[func];
        } else {
            /* Byte mode: One block at a time */
            len = MIN(sd->client_block_size[func], buflen);
        }

        if (sdspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
            spi_unlock(sd);
            return SDIOH_API_RC_FAIL;
        }
        buffer += len;
        buflen -= len;
        if (!fifo)
            addr += len;
    }
    spi_unlock(sd);
    return SDIOH_API_RC_SUCCESS;
}

static int
sdspi_abort(sdioh_info_t *sd, uint func)
{
    uint8 spi_databuf[] = { 0x74, 0x80, 0x00, 0x0C, 0xFF, 0x95, 0xFF, 0xFF,
                            0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
    uint8 spi_rspbuf[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
                           0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
    int err = 0;

    sd_err(("Sending SPI Abort to F%d\n", func));
    spi_databuf[4] = func & 0x7;
    /* write to function 0, addr 6 (IOABORT) func # in 3 LSBs. */
    spi_sendrecv(sd, spi_databuf, spi_rspbuf, sizeof(spi_databuf));

    return err;
}

extern int
sdioh_abort(sdioh_info_t *sd, uint fnum)
{
    int ret;

    spi_lock(sd);
    ret = sdspi_abort(sd, fnum);
    spi_unlock(sd);

    return ret;
}

int
sdioh_start(sdioh_info_t *sd, int stage)
{
    return SUCCESS;
}

int
sdioh_stop(sdioh_info_t *sd)
{
    return SUCCESS;
}


/*
* Private/Static work routines
*/
static bool
sdspi_reset(sdioh_info_t *sd, bool host_reset, bool client_reset)
{
    if (!sd)
        return TRUE;

    spi_lock(sd);
    /* Reset client card */
    if (client_reset && (sd->adapter_slot != -1)) {
        if (sdspi_card_regwrite(sd, 0, SDIOD_CCCR_IOABORT, 1, 0x8) != SUCCESS)
            sd_err(("%s: Cannot write to card reg 0x%x\n",
                    __FUNCTION__, SDIOD_CCCR_IOABORT));
        else
            sd->card_rca = 0;
    }

    /* The host reset is a NOP in the sd-spi case. */
    if (host_reset) {
        sd->sd_mode = SDIOH_MODE_SPI;
    }
    spi_unlock(sd);
    return TRUE;
}

static int
sdspi_host_init(sdioh_info_t *sd)
{
    sdspi_reset(sd, 1, 0);

    /* Default power on mode is SD1 */
    sd->sd_mode = SDIOH_MODE_SPI;
    sd->polled_mode = TRUE;
    sd->host_init_done = TRUE;
    sd->card_init_done = FALSE;
    sd->adapter_slot = 1;

    return (SUCCESS);
}

#define CMD0_RETRIES 3
#define CMD5_RETRIES 10

static int
get_ocr(sdioh_info_t *sd, uint32 *cmd_arg, uint32 *cmd_rsp)
{
    uint32 rsp5;
    int retries, status;

    /* First issue a CMD0 to get the card into SPI mode. */
    for (retries = 0; retries <= CMD0_RETRIES; retries++) {
        if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
                                      SDIOH_CMD_0, *cmd_arg, NULL, 0)) != SUCCESS) {
            sd_err(("%s: No response to CMD0\n", __FUNCTION__));
            continue;
        }

        sdspi_cmd_getrsp(sd, &rsp5, 1);

        if (GFIELD(rsp5, SPI_RSP_ILL_CMD)) {
            printf("%s: Card already initialized (continuing)\n", __FUNCTION__);
            break;
        }

        if (GFIELD(rsp5, SPI_RSP_IDLE)) {
            printf("%s: Card in SPI mode\n", __FUNCTION__);
            break;
        }
    }

    if (retries > CMD0_RETRIES) {
        sd_err(("%s: Too many retries for CMD0\n", __FUNCTION__));
        return ERROR;
    }

    /* Get the Card's Operation Condition. */
    /* Occasionally the board takes a while to become ready. */
    for (retries = 0; retries <= CMD5_RETRIES; retries++) {
        if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
                                      SDIOH_CMD_5, *cmd_arg, NULL, 0)) != SUCCESS) {
            sd_err(("%s: No response to CMD5\n", __FUNCTION__));
            continue;
        }

        printf("CMD5 response data was: 0x%08x\n", sd->card_rsp_data);

        if (GFIELD(sd->card_rsp_data, RSP4_CARD_READY)) {
            printf("%s: Card ready\n", __FUNCTION__);
            break;
        }
    }

    if (retries > CMD5_RETRIES) {
        sd_err(("%s: Too many retries for CMD5\n", __FUNCTION__));
        return ERROR;
    }

    *cmd_rsp = sd->card_rsp_data;

    sdspi_crc_onoff(sd, sd_crc ? 1 : 0);

    return (SUCCESS);
}

static int
sdspi_crc_onoff(sdioh_info_t *sd, bool use_crc)
{
    uint32 args;
    int status;

    args = use_crc ? 1 : 0;
    if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
                                  SDIOH_CMD_59, args, NULL, 0)) != SUCCESS) {
        sd_err(("%s: No response to CMD59\n", __FUNCTION__));
    }

    sd_info(("CMD59 response data was: 0x%08x\n", sd->card_rsp_data));

    sd_err(("SD-SPI CRC turned %s\n", use_crc ? "ON" : "OFF"));
    return (SUCCESS);
}

static int
sdspi_client_init(sdioh_info_t *sd)
{
    uint8 fn_ints;

    sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));

    /* Start at ~400KHz clock rate for initialization */
    if (!spi_start_clock(sd, 128)) {
        sd_err(("spi_start_clock failed\n"));
        return ERROR;
    }

    if (!sdspi_start_power(sd)) {
        sd_err(("sdspi_start_power failed\n"));
        return ERROR;
    }

    if (sd->num_funcs == 0) {
        sd_err(("%s: No IO funcs!\n", __FUNCTION__));
        return ERROR;
    }

    sdspi_card_enablefuncs(sd);

    set_client_block_size(sd, 1, BLOCK_SIZE_4318);
    fn_ints = INTR_CTL_FUNC1_EN;

    if (sd->num_funcs >= 2) {
        set_client_block_size(sd, 2, sd_f2_blocksize /* BLOCK_SIZE_4328 */);
        fn_ints |= INTR_CTL_FUNC2_EN;
    }

    /* Enable/Disable Client interrupts */
    /* Turn on here but disable at host controller */
    if (sdspi_card_regwrite(sd, 0, SDIOD_CCCR_INTEN, 1,
                            (fn_ints | INTR_CTL_MASTER_EN)) != SUCCESS) {
        sd_err(("%s: Could not enable ints in CCCR\n", __FUNCTION__));
        return ERROR;
    }

    /* Switch to High-speed clocking mode if both host and device support it */
    sdspi_set_highspeed_mode(sd, (bool)sd_hiok);

    /* After configuring for High-Speed mode, set the desired clock rate. */
    if (!spi_start_clock(sd, (uint16)sd_divisor)) {
        sd_err(("spi_start_clock failed\n"));
        return ERROR;
    }

    sd->card_init_done = TRUE;

    return SUCCESS;
}

static int
sdspi_set_highspeed_mode(sdioh_info_t *sd, bool HSMode)
{
    uint32 regdata;
    int status;
    bool hsmode;

    if (HSMode == TRUE) {

        sd_err(("Attempting to enable High-Speed mode.\n"));

        if ((status = sdspi_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
                                         1, &regdata)) != SUCCESS) {
            return status;
        }
        if (regdata & SDIO_SPEED_SHS) {
            sd_err(("Device supports High-Speed mode.\n"));

            regdata |= SDIO_SPEED_EHS;

            sd_err(("Writing %08x to Card at %08x\n",
                     regdata, SDIOD_CCCR_SPEED_CONTROL));
            if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
                                              1, regdata)) != BCME_OK) {
                return status;
            }

            hsmode = 1;

            sd_err(("High-speed clocking mode enabled.\n"));
        }
        else {
            sd_err(("Device does not support High-Speed Mode.\n"));
            hsmode = 0;
        }
    } else {
        if ((status = sdspi_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
                                         1, &regdata)) != SUCCESS) {
            return status;
        }

        regdata = ~SDIO_SPEED_EHS;

        sd_err(("Writing %08x to Card at %08x\n",
                 regdata, SDIOD_CCCR_SPEED_CONTROL));
        if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
                                          1, regdata)) != BCME_OK) {
            return status;
        }

        sd_err(("Low-speed clocking mode enabled.\n"));
        hsmode = 0;
    }

    spi_controller_highspeed_mode(sd, hsmode);

    return TRUE;
}

bool
sdspi_start_power(sdioh_info_t *sd)
{
    uint32 cmd_arg;
    uint32 cmd_rsp;

    sd_trace(("%s\n", __FUNCTION__));

    /* Get the Card's Operation Condition.  Occasionally the board
     * takes a while to become ready
     */

    cmd_arg = 0;
    if (get_ocr(sd, &cmd_arg, &cmd_rsp) != SUCCESS) {
        sd_err(("%s: Failed to get OCR; bailing\n", __FUNCTION__));
        return FALSE;
    }

    sd_err(("mem_present = %d\n", GFIELD(cmd_rsp, RSP4_MEM_PRESENT)));
    sd_err(("num_funcs = %d\n", GFIELD(cmd_rsp, RSP4_NUM_FUNCS)));
    sd_err(("card_ready = %d\n", GFIELD(cmd_rsp, RSP4_CARD_READY)));
    sd_err(("OCR = 0x%x\n", GFIELD(cmd_rsp, RSP4_IO_OCR)));

    /* Verify that the card supports I/O mode */
    if (GFIELD(cmd_rsp, RSP4_NUM_FUNCS) == 0) {
        sd_err(("%s: Card does not support I/O\n", __FUNCTION__));
        return ERROR;
    }

    sd->num_funcs = GFIELD(cmd_rsp, RSP4_NUM_FUNCS);

    /* Examine voltage: Arasan only supports 3.3 volts,
     * so look for 3.2-3.3 Volts and also 3.3-3.4 volts.
     */

    if ((GFIELD(cmd_rsp, RSP4_IO_OCR) & (0x3 << 20)) == 0) {
        sd_err(("This client does not support 3.3 volts!\n"));
        return ERROR;
    }


    return TRUE;
}

static int
sdspi_driver_init(sdioh_info_t *sd)
{
    sd_trace(("%s\n", __FUNCTION__));

    if ((sdspi_host_init(sd)) != SUCCESS) {
        return ERROR;
    }

    if (sdspi_client_init(sd) != SUCCESS) {
        return ERROR;
    }

    return SUCCESS;
}

static int
sdspi_card_enablefuncs(sdioh_info_t *sd)
{
    int status;
    uint32 regdata;
    uint32 regaddr, fbraddr;
    uint8 func;
    uint8 *ptr;

    sd_trace(("%s\n", __FUNCTION__));
    /* Get the Card's common CIS address */
    ptr = (uint8 *) &sd->com_cis_ptr;
    for (regaddr = SDIOD_CCCR_CISPTR_0; regaddr <= SDIOD_CCCR_CISPTR_2; regaddr++) {
        if ((status = sdspi_card_regread (sd, 0, regaddr, 1, &regdata)) != SUCCESS)
            return status;

        *ptr++ = (uint8) regdata;
    }

    /* Only the lower 17-bits are valid */
    sd->com_cis_ptr &= 0x0001FFFF;
    sd->func_cis_ptr[0] = sd->com_cis_ptr;
    sd_info(("%s: Card's Common CIS Ptr = 0x%x\n", __FUNCTION__, sd->com_cis_ptr));

    /* Get the Card's function CIS (for each function) */
    for (fbraddr = SDIOD_FBR_STARTADDR, func = 1;
         func <= sd->num_funcs; func++, fbraddr += SDIOD_FBR_SIZE) {
        ptr = (uint8 *) &sd->func_cis_ptr[func];
        for (regaddr = SDIOD_FBR_CISPTR_0; regaddr <= SDIOD_FBR_CISPTR_2; regaddr++) {
            if ((status = sdspi_card_regread (sd, 0, regaddr + fbraddr, 1, &regdata))
                != SUCCESS)
                return status;

            *ptr++ = (uint8) regdata;
        }

        /* Only the lower 17-bits are valid */
        sd->func_cis_ptr[func] &= 0x0001FFFF;
        sd_info(("%s: Function %d CIS Ptr = 0x%x\n",
                 __FUNCTION__, func, sd->func_cis_ptr[func]));
    }

    sd_info(("%s: write ESCI bit\n", __FUNCTION__));
    /* Enable continuous SPI interrupt (ESCI bit) */
    sdspi_card_regwrite(sd, 0, SDIOD_CCCR_BICTRL, 1, 0x60);

    sd_info(("%s: enable f1\n", __FUNCTION__));
    /* Enable function 1 on the card */
    regdata = SDIO_FUNC_ENABLE_1;
    if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_IOEN, 1, regdata)) != SUCCESS)
        return status;

    sd_info(("%s: done\n", __FUNCTION__));
    return SUCCESS;
}

/* Read client card reg */
static int
sdspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
{
    int status;
    uint32 cmd_arg;
    uint32 rsp5;

    cmd_arg = 0;

    if ((func == 0) || (regsize == 1)) {
        cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
        cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
        cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_READ);
        cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
        cmd_arg = SFIELD(cmd_arg, CMD52_DATA, 0);

        if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_52, cmd_arg, NULL, 0))
            != SUCCESS)
            return status;

        sdspi_cmd_getrsp(sd, &rsp5, 1);

        if (rsp5 != 0x00)
            sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
                    __FUNCTION__, rsp5, func));

        *data = sd->card_rsp_data >> 24;
    } else {
        cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize);
        cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
        cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
        cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
        cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr);
        cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ);

        sd->data_xfer_count = regsize;

        /* sdspi_cmd_issue() returns with the command complete bit
         * in the ISR already cleared
         */
        if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_53, cmd_arg, NULL, 0))
            != SUCCESS)
            return status;

        sdspi_cmd_getrsp(sd, &rsp5, 1);

        if (rsp5 != 0x00)
            sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
                    __FUNCTION__, rsp5, func));

        *data = sd->card_rsp_data;
        if (regsize == 2) {
            *data &= 0xffff;
        }

        sd_info(("%s: CMD53 func %d, addr 0x%x, size %d, data 0x%08x\n",
                 __FUNCTION__, func, regaddr, regsize, *data));


    }

    return SUCCESS;
}

/* write a client register */
static int
sdspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
{
    int status;
    uint32 cmd_arg, rsp5, flags;

    cmd_arg = 0;

    if ((func == 0) || (regsize == 1)) {
        cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
        cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
        cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
        cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
        cmd_arg = SFIELD(cmd_arg, CMD52_DATA, data & 0xff);
        if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_52, cmd_arg, NULL, 0))
            != SUCCESS)
            return status;

        sdspi_cmd_getrsp(sd, &rsp5, 1);
        flags = GFIELD(rsp5, RSP5_FLAGS);
        if (flags && (flags != 0x10))
            sd_err(("%s: rsp5.rsp5.flags = 0x%x, expecting 0x10\n",
                    __FUNCTION__,  flags));
    }
    else {
        cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize);
        cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
        cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
        cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
        cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr);
        cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE);

        sd->data_xfer_count = regsize;
        sd->cmd53_wr_data = data;

        sd_info(("%s: CMD53 func %d, addr 0x%x, size %d, data 0x%08x\n",
                 __FUNCTION__, func, regaddr, regsize, data));

        /* sdspi_cmd_issue() returns with the command complete bit
         * in the ISR already cleared
         */
        if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_53, cmd_arg, NULL, 0))
            != SUCCESS)
            return status;

        sdspi_cmd_getrsp(sd, &rsp5, 1);

        if (rsp5 != 0x00)
            sd_err(("%s: rsp5 flags = 0x%x, expecting 0x00\n",
                    __FUNCTION__,  rsp5));

    }
    return SUCCESS;
}

void
sdspi_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count /* num 32 bit words */)
{
    *rsp_buffer = sd->card_response;
}

int max_errors = 0;

#define SPI_MAX_PKT_LEN        768
uint8    spi_databuf[SPI_MAX_PKT_LEN];
uint8    spi_rspbuf[SPI_MAX_PKT_LEN];

/* datalen is used for CMD53 length only (0 for sd->data_xfer_count) */
static int
sdspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg,
                uint32 *data, uint32 datalen)
{
    uint32 cmd_reg;
    uint32 cmd_arg = arg;
    uint8 cmd_crc = 0x95;        /* correct CRC for CMD0 and don't care for others. */
    uint16 dat_crc;
    uint8 cmd52data = 0;
    uint32 i, j;
    uint32 spi_datalen = 0;
    uint32 spi_pre_cmd_pad    = 0;
    uint32 spi_max_response_pad = 128;

    cmd_reg = 0;
    cmd_reg = SFIELD(cmd_reg, SPI_DIR, 1);
    cmd_reg = SFIELD(cmd_reg, SPI_CMD_INDEX, cmd);

    if (GFIELD(cmd_arg, CMD52_RW_FLAG) == 1) {    /* Same for CMD52 and CMD53 */
        cmd_reg = SFIELD(cmd_reg, SPI_RW, 1);
    }

    switch (cmd) {
    case SDIOH_CMD_59:    /* CRC_ON_OFF (SPI Mode Only) - Response R1 */
        cmd52data = arg & 0x1;
    case SDIOH_CMD_0:    /* Set Card to Idle State - No Response */
    case SDIOH_CMD_5:    /* Send Operation condition - Response R4 */
        sd_trace(("%s: CMD%d\n", __FUNCTION__, cmd));
        spi_datalen = 44;
        spi_pre_cmd_pad = 12;
        spi_max_response_pad = 28;
        break;

    case SDIOH_CMD_3:    /* Ask card to send RCA - Response R6 */
    case SDIOH_CMD_7:    /* Select card - Response R1 */
    case SDIOH_CMD_15:    /* Set card to inactive state - Response None */
        sd_err(("%s: CMD%d is invalid for SPI Mode.\n", __FUNCTION__, cmd));
        return ERROR;
        break;

    case SDIOH_CMD_52:    /* IO R/W Direct (single byte) - Response R5 */
        cmd52data = GFIELD(cmd_arg, CMD52_DATA);
        cmd_arg = arg;
        cmd_reg = SFIELD(cmd_reg, SPI_FUNC, GFIELD(cmd_arg, CMD52_FUNCTION));
        cmd_reg = SFIELD(cmd_reg, SPI_ADDR, GFIELD(cmd_arg, CMD52_REG_ADDR));
        /* Display trace for byte write */
        if (GFIELD(cmd_arg, CMD52_RW_FLAG) == 1) {
            sd_trace(("%s: CMD52: Wr F:%d @0x%04x=%02x\n",
                      __FUNCTION__,
                      GFIELD(cmd_arg, CMD52_FUNCTION),
                      GFIELD(cmd_arg, CMD52_REG_ADDR),
                      cmd52data));
        }

        spi_datalen = 32;
        spi_max_response_pad = 28;

        break;
    case SDIOH_CMD_53:    /* IO R/W Extended (multiple bytes/blocks) */
        cmd_arg = arg;
        cmd_reg = SFIELD(cmd_reg, SPI_FUNC, GFIELD(cmd_arg, CMD53_FUNCTION));
        cmd_reg = SFIELD(cmd_reg, SPI_ADDR, GFIELD(cmd_arg, CMD53_REG_ADDR));
        cmd_reg = SFIELD(cmd_reg, SPI_BLKMODE, 0);
        cmd_reg = SFIELD(cmd_reg, SPI_OPCODE, GFIELD(cmd_arg, CMD53_OP_CODE));
        cmd_reg = SFIELD(cmd_reg, SPI_STUFF0, (sd->data_xfer_count>>8));
        cmd52data = (uint8)sd->data_xfer_count;

        /* Set upper bit in byte count if necessary, but don't set it for 512 bytes. */
        if ((sd->data_xfer_count > 255) && (sd->data_xfer_count < 512)) {
            cmd_reg |= 1;
        }

        if (GFIELD(cmd_reg, SPI_RW) == 1) { /* Write */
            spi_max_response_pad = 32;
            spi_datalen = (sd->data_xfer_count + spi_max_response_pad) & 0xFFFC;
        } else { /* Read */

            spi_max_response_pad = 32;
            spi_datalen = (sd->data_xfer_count + spi_max_response_pad) & 0xFFFC;
        }
        sd_trace(("%s: CMD53: %s F:%d @0x%04x len=0x%02x\n",
                  __FUNCTION__,
                  (GFIELD(cmd_reg, SPI_RW) == 1 ? "Wr" : "Rd"),
                  GFIELD(cmd_arg, CMD53_FUNCTION),
                  GFIELD(cmd_arg, CMD53_REG_ADDR),
                  cmd52data));
        break;

    default:
        sd_err(("%s: Unknown command %d\n", __FUNCTION__, cmd));
        return ERROR;
    }

    /* Set up and issue the SDIO command */
    memset(spi_databuf, SDSPI_IDLE_PAD, spi_datalen);
    spi_databuf[spi_pre_cmd_pad + 0] = (cmd_reg & 0xFF000000) >> 24;
    spi_databuf[spi_pre_cmd_pad + 1] = (cmd_reg & 0x00FF0000) >> 16;
    spi_databuf[spi_pre_cmd_pad + 2] = (cmd_reg & 0x0000FF00) >> 8;
    spi_databuf[spi_pre_cmd_pad + 3] = (cmd_reg & 0x000000FF);
    spi_databuf[spi_pre_cmd_pad + 4] = cmd52data;

    /* Generate CRC7 for command, if CRC is enabled, otherwise, a
     * default CRC7 of 0x95, which is correct for CMD0, is used.
     */
    if (sd_crc) {
        cmd_crc = sdspi_crc7(&spi_databuf[spi_pre_cmd_pad], 5);
    }
    spi_databuf[spi_pre_cmd_pad + 5] = cmd_crc;
#define SPI_STOP_TRAN        0xFD

    /* for CMD53 Write, put the data into the output buffer  */
    if ((cmd == SDIOH_CMD_53) && (GFIELD(cmd_arg, CMD53_RW_FLAG) == 1)) {
        if (datalen != 0) {
            spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD;
            spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK;

            for (i = 0; i < sd->data_xfer_count; i++) {
                spi_databuf[i + 11 + spi_pre_cmd_pad] = ((uint8 *)data);
            }
            if (sd_crc) {
                dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], i);
            } else {
                dat_crc = 0xAAAA;
            }
            spi_databuf[i + 11 + spi_pre_cmd_pad] = (dat_crc >> 8) & 0xFF;
            spi_databuf[i + 12 + spi_pre_cmd_pad] = dat_crc & 0xFF;
        } else if (sd->data_xfer_count == 2) {
            spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD;
            spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK;
            spi_databuf[spi_pre_cmd_pad + 11]  = sd->cmd53_wr_data & 0xFF;
            spi_databuf[spi_pre_cmd_pad + 12] = (sd->cmd53_wr_data & 0x0000FF00) >> 8;
            if (sd_crc) {
                dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], 2);
            } else {
                dat_crc = 0x22AA;
            }
            spi_databuf[spi_pre_cmd_pad + 13] = (dat_crc >> 8) & 0xFF;
            spi_databuf[spi_pre_cmd_pad + 14] = (dat_crc & 0xFF);
        } else if (sd->data_xfer_count == 4) {
            spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD;
            spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK;
            spi_databuf[spi_pre_cmd_pad + 11]  = sd->cmd53_wr_data & 0xFF;
            spi_databuf[spi_pre_cmd_pad + 12] = (sd->cmd53_wr_data & 0x0000FF00) >> 8;
            spi_databuf[spi_pre_cmd_pad + 13] = (sd->cmd53_wr_data & 0x00FF0000) >> 16;
            spi_databuf[spi_pre_cmd_pad + 14] = (sd->cmd53_wr_data & 0xFF000000) >> 24;
            if (sd_crc) {
                dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], 4);
            } else {
                dat_crc = 0x44AA;
            }
            spi_databuf[spi_pre_cmd_pad + 15] = (dat_crc >> 8) & 0xFF;
            spi_databuf[spi_pre_cmd_pad + 16] = (dat_crc & 0xFF);
        } else {
            printf("CMD53 Write: size %d unsupported\n", sd->data_xfer_count);
        }
    }

    spi_sendrecv(sd, spi_databuf, spi_rspbuf, spi_datalen);

    for (i = spi_pre_cmd_pad + SDSPI_COMMAND_LEN; i < spi_max_response_pad; i++) {
        if ((spi_rspbuf & SDSPI_START_BIT_MASK) == 0) {
            break;
        }
    }

    if (i == spi_max_response_pad) {
        sd_err(("%s: Did not get a response for CMD%d\n", __FUNCTION__, cmd));
        return ERROR;
    }

    /* Extract the response. */
    sd->card_response = spi_rspbuf;

    /* for CMD53 Read, find the start of the response data... */
    if ((cmd == SDIOH_CMD_53) && (GFIELD(cmd_arg, CMD52_RW_FLAG) == 0)) {
        for (; i < spi_max_response_pad; i++) {
            if (spi_rspbuf == SDSPI_START_BLOCK) {
                break;
            }
        }

        if (i == spi_max_response_pad) {
            printf("Did not get a start of data phase for CMD%d\n", cmd);
            max_errors++;
            sdspi_abort(sd, GFIELD(cmd_arg, CMD53_FUNCTION));
        }
        sd->card_rsp_data = spi_rspbuf[i+1];
        sd->card_rsp_data |= spi_rspbuf[i+2] << 8;
        sd->card_rsp_data |= spi_rspbuf[i+3] << 16;
        sd->card_rsp_data |= spi_rspbuf[i+4] << 24;

        if (datalen != 0) {
            i++;
            for (j = 0; j < sd->data_xfer_count; j++) {
                ((uint8 *)data)[j] = spi_rspbuf[i+j];
            }
            if (sd_crc) {
                uint16 recv_crc;

                recv_crc = spi_rspbuf[i+j] << 8 | spi_rspbuf[i+j+1];
                dat_crc = sdspi_crc16((uint8 *)data, datalen);
                if (dat_crc != recv_crc) {
                    sd_err(("%s: Incorrect data CRC: expected 0x%04x, "
                            "received 0x%04x\n",
                            __FUNCTION__, dat_crc, recv_crc));
                }
            }
        }
        return SUCCESS;
    }

    sd->card_rsp_data = spi_rspbuf[i+4];
    sd->card_rsp_data |= spi_rspbuf[i+3] << 8;
    sd->card_rsp_data |= spi_rspbuf[i+2] << 16;
    sd->card_rsp_data |= spi_rspbuf[i+1] << 24;

    /* Display trace for byte read */
    if ((cmd == SDIOH_CMD_52) && (GFIELD(cmd_arg, CMD52_RW_FLAG) == 0)) {
        sd_trace(("%s: CMD52: Rd F:%d @0x%04x=%02x\n",
                  __FUNCTION__,
                  GFIELD(cmd_arg, CMD53_FUNCTION),
                  GFIELD(cmd_arg, CMD53_REG_ADDR),
                  sd->card_rsp_data >> 24));
    }

    return SUCCESS;
}

/*
* On entry: if single-block or non-block, buffer size <= block size.
* If multi-block, buffer size is unlimited.
* Question is how to handle the left-overs in either single- or multi-block.
* I think the caller should break the buffer up so this routine will always
* use block size == buffer size to handle the end piece of the buffer
*/

static int
sdspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, uint32 addr, int nbytes, uint32 *data)
{
    int status;
    uint32 cmd_arg;
    uint32 rsp5;
    int num_blocks, blocksize;
    bool local_blockmode, local_dma;
    bool read = rw == SDIOH_READ ? 1 : 0;

    ASSERT(nbytes);

    cmd_arg = 0;
    sd_data(("%s: %s 53 func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
             __FUNCTION__, read ? "Rd" : "Wr", func, fifo ? "FIXED" : "INCR",
             addr, nbytes, sd->r_cnt, sd->t_cnt));

    if (read) sd->r_cnt++; else sd->t_cnt++;

    local_blockmode = sd->sd_blockmode;
    local_dma = sd->sd_use_dma;

    /* Don't bother with block mode on small xfers */
    if (nbytes < sd->client_block_size[func]) {
        sd_info(("setting local blockmode to false: nbytes (%d) != block_size (%d)\n",
                 nbytes, sd->client_block_size[func]));
        local_blockmode = FALSE;
        local_dma = FALSE;
    }

    if (local_blockmode) {
        blocksize = MIN(sd->client_block_size[func], nbytes);
        num_blocks = nbytes/blocksize;
        cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, num_blocks);
        cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 1);
    } else {
        num_blocks =  1;
        blocksize = nbytes;
        cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, nbytes);
        cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
    }

    if (fifo)
        cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 0);
    else
        cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);

    cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
    cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, addr);
    if (read)
        cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ);
    else
        cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE);

    sd->data_xfer_count = nbytes;
    if ((func == 2) && (fifo == 1)) {
        sd_data(("%s: %s 53 func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
                 __FUNCTION__, read ? "Rd" : "Wr", func, fifo ? "FIXED" : "INCR",
                 addr, nbytes, sd->r_cnt, sd->t_cnt));
    }

    /* sdspi_cmd_issue() returns with the command complete bit
     * in the ISR already cleared
     */
    if ((status = sdspi_cmd_issue(sd, local_dma,
                                  SDIOH_CMD_53, cmd_arg,
                                  data, nbytes)) != SUCCESS) {
        sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, (read ? "read" : "write")));
        return status;
    }

    sdspi_cmd_getrsp(sd, &rsp5, 1);

    if (rsp5 != 0x00) {
        sd_err(("%s: rsp5 flags = 0x%x, expecting 0x00\n",
                __FUNCTION__,  rsp5));
        return ERROR;
    }

    return SUCCESS;
}

static int
set_client_block_size(sdioh_info_t *sd, int func, int block_size)
{
    int base;
    int err = 0;

    sd_err(("%s: Setting block size %d, func %d\n", __FUNCTION__, block_size, func));
    sd->client_block_size[func] = block_size;

    /* Set the block size in the SDIO Card register */
    base = func * SDIOD_FBR_SIZE;
    err = sdspi_card_regwrite(sd, 0, base + SDIOD_CCCR_BLKSIZE_0, 1, block_size & 0xff);
    if (!err) {
        err = sdspi_card_regwrite(sd, 0, base + SDIOD_CCCR_BLKSIZE_1, 1,
                                  (block_size >> 8) & 0xff);
    }

    /*
     * Do not set the block size in the SDIO Host register; that
     * is func dependent and will get done on an individual
     * transaction basis.
     */

    return (err ? BCME_SDIO_ERROR : 0);
}

/* Reset and re-initialize the device */
int
sdioh_sdio_reset(sdioh_info_t *si)
{
    si->card_init_done = FALSE;
    return sdspi_client_init(si);
}

#define CRC7_POLYNOM    0x09
#define CRC7_CRCHIGHBIT    0x40

static uint8 sdspi_crc7(unsigned char* p, uint32 len)
{
    uint8 c, j, bit, crc = 0;
    uint32 i;

    for (i = 0; i < len; i++) {
        c = *p++;
        for (j = 0x80; j; j >>= 1) {
            bit = crc & CRC7_CRCHIGHBIT;
            crc <<= 1;
            if (c & j) bit ^= CRC7_CRCHIGHBIT;
            if (bit) crc ^= CRC7_POLYNOM;
        }
    }

    /* Convert the CRC7 to an 8-bit SD CRC */
    crc = (crc << 1) | 1;

    return (crc);
}

#define CRC16_POLYNOM    0x1021
#define CRC16_CRCHIGHBIT    0x8000

static uint16 sdspi_crc16(unsigned char* p, uint32 len)
{
    uint32 i;
    uint16 j, c, bit;
    uint16 crc = 0;

    for (i = 0; i < len; i++) {
        c = *p++;
        for (j = 0x80; j; j >>= 1) {
            bit = crc & CRC16_CRCHIGHBIT;
            crc <<= 1;
            if (c & j) bit ^= CRC16_CRCHIGHBIT;
            if (bit) crc ^= CRC16_POLYNOM;
        }
    }

    return (crc);
}
回复

使用道具 举报

该用户从未签到

3

主题

2275

回帖

1万

积分

三级逆天

积分
13833

终身成就奖社区居民忠实会员社区劳模最爱沙发优秀斑竹奖

QQ
发表于 2015-7-7 09:56:04 | 显示全部楼层
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

每日签到,有金币领取。


Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

( 闽ICP备2024076463号-1 ) 论坛技术支持QQ群171867948 ,论坛问题,充值问题请联系QQ1308068381

平平安安
TOP
快速回复 返回顶部 返回列表