|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区
您需要 登录 才可以下载或查看,没有账号?立即注册
×
/*
* Broadcom BCMSDH to SPI Protocol Conversion Layer
*
* Copyright (C) 1999-2010, Broadcom Corporation
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2 (the "GPL"),
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
* following added to such license:
*
* As a special exception, the copyright holders of this software give you
* permission to link this software with independent modules, and to copy and
* distribute the resulting executable under terms of your choice, provided that
* you also meet, for each linked independent module, the terms and conditions of
* the license of that module. An independent module is a module which is not
* derived from this software. The special exception does not apply to any
* modifications of the software.
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a license
* other than the GPL, without Broadcom's express prior written consent.
*
* $Id: bcmsdspi.c,v 1.14.4.2.4.4.6.5 2010/03/10 03:09:48 Exp $
*/
#include <typedefs.h>
#include <bcmdevs.h>
#include <bcmendian.h>
#include <bcmutils.h>
#include <osl.h>
#include <siutils.h>
#include <sdio.h> /* SDIO Device and Protocol Specs */
#include <sdioh.h> /* SDIO Host Controller Specification */
#include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */
#include <sdiovar.h> /* ioctl/iovars */
#include <pcicfg.h>
#include <bcmsdspi.h>
#include <bcmspi.h>
#include <proto/sdspi.h>
#define SD_PAGE 4096
/* Globals */
uint sd_msglevel = SDH_ERROR_VAL;
uint sd_hiok = FALSE; /* Use hi-speed mode if available? */
uint sd_sdmode = SDIOH_MODE_SPI; /* Use SD4 mode by default */
uint sd_f2_blocksize = 512; /* Default blocksize */
uint sd_divisor = 2; /* Default 33MHz/2 = 16MHz for dongle */
uint sd_power = 1; /* Default to SD Slot powered ON */
uint sd_clock = 1; /* Default to SD Clock turned ON */
uint sd_crc = 0; /* Default to SPI CRC Check turned OFF */
uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
uint sd_toctl = 7;
/* Prototypes */
static bool sdspi_start_power(sdioh_info_t *sd);
static int sdspi_set_highspeed_mode(sdioh_info_t *sd, bool HSMode);
static int sdspi_card_enablefuncs(sdioh_info_t *sd);
static void sdspi_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count);
static int sdspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg,
uint32 *data, uint32 datalen);
static int sdspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
int regsize, uint32 *data);
static int sdspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
int regsize, uint32 data);
static int sdspi_driver_init(sdioh_info_t *sd);
static bool sdspi_reset(sdioh_info_t *sd, bool host_reset, bool client_reset);
static int sdspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
uint32 addr, int nbytes, uint32 *data);
static int sdspi_abort(sdioh_info_t *sd, uint func);
static int set_client_block_size(sdioh_info_t *sd, int func, int blocksize);
static uint8 sdspi_crc7(unsigned char* p, uint32 len);
static uint16 sdspi_crc16(unsigned char* p, uint32 len);
static int sdspi_crc_onoff(sdioh_info_t *sd, bool use_crc);
/*
* Public entry points & extern's
*/
extern sdioh_info_t *
sdioh_attach(osl_t *osh, void *bar0, uint irq)
{
sdioh_info_t *sd;
sd_trace(("%s\n", __FUNCTION__));
if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
sd_err(("sdioh_attach: out of memory, malloced %d bytes\n", MALLOCED(osh)));
return NULL;
}
bzero((char *)sd, sizeof(sdioh_info_t));
sd->osh = osh;
if (spi_osinit(sd) != 0) {
sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return NULL;
}
sd->bar0 = (uintptr)bar0;
sd->irq = irq;
sd->intr_handler = NULL;
sd->intr_handler_arg = NULL;
sd->intr_handler_valid = FALSE;
/* Set defaults */
sd->sd_blockmode = FALSE;
sd->use_client_ints = TRUE;
sd->sd_use_dma = FALSE; /* DMA Not supported */
/* Haven't figured out how to make bytemode work with dma */
if (!sd->sd_blockmode)
sd->sd_use_dma = 0;
if (!spi_hw_attach(sd)) {
sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return NULL;
}
if (sdspi_driver_init(sd) != SUCCESS) {
if (sdspi_driver_init(sd) != SUCCESS) {
sd_err(("%s:sdspi_driver_init() failed()\n", __FUNCTION__));
spi_hw_detach(sd);
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
}
if (spi_register_irq(sd, irq) != SUCCESS) {
sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
spi_hw_detach(sd);
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
return (NULL);
}
sd_trace(("%s: Done\n", __FUNCTION__));
return sd;
}
extern SDIOH_API_RC
sdioh_detach(osl_t *osh, sdioh_info_t *sd)
{
sd_trace(("%s\n", __FUNCTION__));
if (sd) {
if (sd->card_init_done)
sdspi_reset(sd, 1, 1);
sd_info(("%s: detaching from hardware\n", __FUNCTION__));
spi_free_irq(sd->irq, sd);
spi_hw_detach(sd);
spi_osfree(sd);
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
}
return SDIOH_API_RC_SUCCESS;
}
/* Configure callback to client when we recieve client interrupt */
extern SDIOH_API_RC
sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
{
sd_trace(("%s: Entering\n", __FUNCTION__));
sd->intr_handler = fn;
sd->intr_handler_arg = argh;
sd->intr_handler_valid = TRUE;
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_interrupt_deregister(sdioh_info_t *sd)
{
sd_trace(("%s: Entering\n", __FUNCTION__));
sd->intr_handler_valid = FALSE;
sd->intr_handler = NULL;
sd->intr_handler_arg = NULL;
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
{
sd_trace(("%s: Entering\n", __FUNCTION__));
*onoff = sd->client_intr_enabled;
return SDIOH_API_RC_SUCCESS;
}
#if defined(DHD_DEBUG)
extern bool
sdioh_interrupt_pending(sdioh_info_t *sd)
{
return 0;
}
#endif
uint
sdioh_query_iofnum(sdioh_info_t *sd)
{
return sd->num_funcs;
}
/* IOVar table */
enum {
IOV_MSGLEVEL = 1,
IOV_BLOCKMODE,
IOV_BLOCKSIZE,
IOV_DMA,
IOV_USEINTS,
IOV_NUMINTS,
IOV_NUMLOCALINTS,
IOV_HOSTREG,
IOV_DEVREG,
IOV_DIVISOR,
IOV_SDMODE,
IOV_HISPEED,
IOV_HCIREGS,
IOV_POWER,
IOV_CLOCK,
IOV_CRC
};
const bcm_iovar_t sdioh_iovars[] = {
{"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 },
{"sd_blockmode", IOV_BLOCKMODE, 0, IOVT_BOOL, 0 },
{"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */
{"sd_dma", IOV_DMA, 0, IOVT_BOOL, 0 },
{"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 },
{"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 },
{"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 },
{"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
{"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 },
{"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 },
{"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 },
{"sd_crc", IOV_CRC, 0, IOVT_UINT32, 0 },
{"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100},
{"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0},
{NULL, 0, 0, 0, 0 }
};
int
sdioh_iovar_op(sdioh_info_t *si, const char *name,
void *params, int plen, void *arg, int len, bool set)
{
const bcm_iovar_t *vi = NULL;
int bcmerror = 0;
int val_size;
int32 int_val = 0;
bool bool_val;
uint32 actionid;
ASSERT(name);
ASSERT(len >= 0);
/* Get must have return space; Set does not take qualifiers */
ASSERT(set || (arg && len));
ASSERT(!set || (!params && !plen));
sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
bcmerror = BCME_UNSUPPORTED;
goto exit;
}
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
goto exit;
/* Set up params so get and set can share the convenience variables */
if (params == NULL) {
params = arg;
plen = len;
}
if (vi->type == IOVT_VOID)
val_size = 0;
else if (vi->type == IOVT_BUFFER)
val_size = len;
else
val_size = sizeof(int);
if (plen >= (int)sizeof(int_val))
bcopy(params, &int_val, sizeof(int_val));
bool_val = (int_val != 0) ? TRUE : FALSE;
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
switch (actionid) {
case IOV_GVAL(IOV_MSGLEVEL):
int_val = (int32)sd_msglevel;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_MSGLEVEL):
sd_msglevel = int_val;
break;
case IOV_GVAL(IOV_BLOCKMODE):
int_val = (int32)si->sd_blockmode;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_BLOCKMODE):
si->sd_blockmode = (bool)int_val;
/* Haven't figured out how to make non-block mode with DMA */
if (!si->sd_blockmode)
si->sd_use_dma = 0;
break;
case IOV_GVAL(IOV_BLOCKSIZE):
if ((uint32)int_val > si->num_funcs) {
bcmerror = BCME_BADARG;
break;
}
int_val = (int32)si->client_block_size[int_val];
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_BLOCKSIZE):
{
uint func = ((uint32)int_val >> 16);
uint blksize = (uint16)int_val;
uint maxsize;
if (func > si->num_funcs) {
bcmerror = BCME_BADARG;
break;
}
switch (func) {
case 0: maxsize = 32; break;
case 1: maxsize = BLOCK_SIZE_4318; break;
case 2: maxsize = BLOCK_SIZE_4328; break;
default: maxsize = 0;
}
if (blksize > maxsize) {
bcmerror = BCME_BADARG;
break;
}
if (!blksize) {
blksize = maxsize;
}
/* Now set it */
spi_lock(si);
bcmerror = set_client_block_size(si, func, blksize);
spi_unlock(si);
break;
}
case IOV_GVAL(IOV_DMA):
int_val = (int32)si->sd_use_dma;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DMA):
si->sd_use_dma = (bool)int_val;
break;
case IOV_GVAL(IOV_USEINTS):
int_val = (int32)si->use_client_ints;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_USEINTS):
break;
case IOV_GVAL(IOV_DIVISOR):
int_val = (uint32)sd_divisor;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_DIVISOR):
sd_divisor = int_val;
if (!spi_start_clock(si, (uint16)sd_divisor)) {
sd_err(("set clock failed!\n"));
bcmerror = BCME_ERROR;
}
break;
case IOV_GVAL(IOV_POWER):
int_val = (uint32)sd_power;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_POWER):
sd_power = int_val;
break;
case IOV_GVAL(IOV_CLOCK):
int_val = (uint32)sd_clock;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_CLOCK):
sd_clock = int_val;
break;
case IOV_GVAL(IOV_CRC):
int_val = (uint32)sd_crc;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_CRC):
/* Apply new setting, but don't change sd_crc until
* after the CRC-mode is selected in the device. This
* is required because the software must generate a
* correct CRC for the CMD59 in order to be able to
* turn OFF the CRC.
*/
sdspi_crc_onoff(si, int_val ? 1 : 0);
sd_crc = int_val;
break;
case IOV_GVAL(IOV_SDMODE):
int_val = (uint32)sd_sdmode;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_SDMODE):
sd_sdmode = int_val;
break;
case IOV_GVAL(IOV_HISPEED):
int_val = (uint32)sd_hiok;
bcopy(&int_val, arg, val_size);
break;
case IOV_SVAL(IOV_HISPEED):
sd_hiok = int_val;
if (!sdspi_set_highspeed_mode(si, (bool)sd_hiok)) {
sd_err(("Failed changing highspeed mode to %d.\n", sd_hiok));
bcmerror = BCME_ERROR;
return ERROR;
}
break;
case IOV_GVAL(IOV_NUMINTS):
int_val = (int32)si->intrcount;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_NUMLOCALINTS):
int_val = (int32)si->local_intrcount;
bcopy(&int_val, arg, val_size);
break;
case IOV_GVAL(IOV_HOSTREG):
{
break;
}
case IOV_SVAL(IOV_HOSTREG):
{
sd_err(("IOV_HOSTREG unsupported\n"));
break;
}
case IOV_GVAL(IOV_DEVREG):
{
sdreg_t *sd_ptr = (sdreg_t *)params;
uint8 data;
if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
bcmerror = BCME_SDIO_ERROR;
break;
}
int_val = (int)data;
bcopy(&int_val, arg, sizeof(int_val));
break;
}
case IOV_SVAL(IOV_DEVREG):
{
sdreg_t *sd_ptr = (sdreg_t *)params;
uint8 data = (uint8)sd_ptr->value;
if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
bcmerror = BCME_SDIO_ERROR;
break;
}
break;
}
default:
bcmerror = BCME_UNSUPPORTED;
break;
}
exit:
return bcmerror;
}
extern SDIOH_API_RC
sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
SDIOH_API_RC status;
/* No lock needed since sdioh_request_byte does locking */
status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
return status;
}
extern SDIOH_API_RC
sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
{
/* No lock needed since sdioh_request_byte does locking */
SDIOH_API_RC status;
status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
return status;
}
extern SDIOH_API_RC
sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
{
uint32 count;
int offset;
uint32 foo;
uint8 *cis = cisd;
sd_trace(("%s: Func = %d\n", __FUNCTION__, func));
if (!sd->func_cis_ptr[func]) {
bzero(cis, length);
return SDIOH_API_RC_FAIL;
}
spi_lock(sd);
*cis = 0;
for (count = 0; count < length; count++) {
offset = sd->func_cis_ptr[func] + count;
if (sdspi_card_regread (sd, 0, offset, 1, &foo) < 0) {
sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
spi_unlock(sd);
return SDIOH_API_RC_FAIL;
}
*cis = (uint8)(foo & 0xff);
cis++;
}
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
{
int status;
uint32 cmd_arg;
uint32 rsp5;
spi_lock(sd);
cmd_arg = 0;
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, rw == SDIOH_READ ? 0 : *byte);
sd_trace(("%s: rw=%d, func=%d, regaddr=0x%08x\n", __FUNCTION__, rw, func, regaddr));
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
SDIOH_CMD_52, cmd_arg, NULL, 0)) != SUCCESS) {
spi_unlock(sd);
return status;
}
sdspi_cmd_getrsp(sd, &rsp5, 1);
if (rsp5 != 0x00) {
sd_err(("%s: rsp5 flags is 0x%x func=%d\n",
__FUNCTION__, rsp5, func));
/* ASSERT(0); */
spi_unlock(sd);
return SDIOH_API_RC_FAIL;
}
if (rw == SDIOH_READ)
*byte = sd->card_rsp_data >> 24;
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
extern SDIOH_API_RC
sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
uint32 *word, uint nbytes)
{
int status;
spi_lock(sd);
if (rw == SDIOH_READ)
status = sdspi_card_regread(sd, func, addr, nbytes, word);
else
status = sdspi_card_regwrite(sd, func, addr, nbytes, *word);
spi_unlock(sd);
return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
}
extern SDIOH_API_RC
sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
{
int len;
int buflen = (int)buflen_u;
bool fifo = (fix_inc == SDIOH_DATA_FIX);
spi_lock(sd);
ASSERT(reg_width == 4);
ASSERT(buflen_u < (1 << 30));
ASSERT(sd->client_block_size[func]);
sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
__FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
buflen_u, sd->r_cnt, sd->t_cnt, pkt));
/* Break buffer down into blocksize chunks:
* Bytemode: 1 block at a time.
*/
while (buflen > 0) {
if (sd->sd_blockmode) {
/* Max xfer is Page size */
len = MIN(SD_PAGE, buflen);
/* Round down to a block boundry */
if (buflen > sd->client_block_size[func])
len = (len/sd->client_block_size[func]) *
sd->client_block_size[func];
} else {
/* Byte mode: One block at a time */
len = MIN(sd->client_block_size[func], buflen);
}
if (sdspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
spi_unlock(sd);
return SDIOH_API_RC_FAIL;
}
buffer += len;
buflen -= len;
if (!fifo)
addr += len;
}
spi_unlock(sd);
return SDIOH_API_RC_SUCCESS;
}
static int
sdspi_abort(sdioh_info_t *sd, uint func)
{
uint8 spi_databuf[] = { 0x74, 0x80, 0x00, 0x0C, 0xFF, 0x95, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8 spi_rspbuf[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
int err = 0;
sd_err(("Sending SPI Abort to F%d\n", func));
spi_databuf[4] = func & 0x7;
/* write to function 0, addr 6 (IOABORT) func # in 3 LSBs. */
spi_sendrecv(sd, spi_databuf, spi_rspbuf, sizeof(spi_databuf));
return err;
}
extern int
sdioh_abort(sdioh_info_t *sd, uint fnum)
{
int ret;
spi_lock(sd);
ret = sdspi_abort(sd, fnum);
spi_unlock(sd);
return ret;
}
int
sdioh_start(sdioh_info_t *sd, int stage)
{
return SUCCESS;
}
int
sdioh_stop(sdioh_info_t *sd)
{
return SUCCESS;
}
/*
* Private/Static work routines
*/
static bool
sdspi_reset(sdioh_info_t *sd, bool host_reset, bool client_reset)
{
if (!sd)
return TRUE;
spi_lock(sd);
/* Reset client card */
if (client_reset && (sd->adapter_slot != -1)) {
if (sdspi_card_regwrite(sd, 0, SDIOD_CCCR_IOABORT, 1, 0x8) != SUCCESS)
sd_err(("%s: Cannot write to card reg 0x%x\n",
__FUNCTION__, SDIOD_CCCR_IOABORT));
else
sd->card_rca = 0;
}
/* The host reset is a NOP in the sd-spi case. */
if (host_reset) {
sd->sd_mode = SDIOH_MODE_SPI;
}
spi_unlock(sd);
return TRUE;
}
static int
sdspi_host_init(sdioh_info_t *sd)
{
sdspi_reset(sd, 1, 0);
/* Default power on mode is SD1 */
sd->sd_mode = SDIOH_MODE_SPI;
sd->polled_mode = TRUE;
sd->host_init_done = TRUE;
sd->card_init_done = FALSE;
sd->adapter_slot = 1;
return (SUCCESS);
}
#define CMD0_RETRIES 3
#define CMD5_RETRIES 10
static int
get_ocr(sdioh_info_t *sd, uint32 *cmd_arg, uint32 *cmd_rsp)
{
uint32 rsp5;
int retries, status;
/* First issue a CMD0 to get the card into SPI mode. */
for (retries = 0; retries <= CMD0_RETRIES; retries++) {
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
SDIOH_CMD_0, *cmd_arg, NULL, 0)) != SUCCESS) {
sd_err(("%s: No response to CMD0\n", __FUNCTION__));
continue;
}
sdspi_cmd_getrsp(sd, &rsp5, 1);
if (GFIELD(rsp5, SPI_RSP_ILL_CMD)) {
printf("%s: Card already initialized (continuing)\n", __FUNCTION__);
break;
}
if (GFIELD(rsp5, SPI_RSP_IDLE)) {
printf("%s: Card in SPI mode\n", __FUNCTION__);
break;
}
}
if (retries > CMD0_RETRIES) {
sd_err(("%s: Too many retries for CMD0\n", __FUNCTION__));
return ERROR;
}
/* Get the Card's Operation Condition. */
/* Occasionally the board takes a while to become ready. */
for (retries = 0; retries <= CMD5_RETRIES; retries++) {
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
SDIOH_CMD_5, *cmd_arg, NULL, 0)) != SUCCESS) {
sd_err(("%s: No response to CMD5\n", __FUNCTION__));
continue;
}
printf("CMD5 response data was: 0x%08x\n", sd->card_rsp_data);
if (GFIELD(sd->card_rsp_data, RSP4_CARD_READY)) {
printf("%s: Card ready\n", __FUNCTION__);
break;
}
}
if (retries > CMD5_RETRIES) {
sd_err(("%s: Too many retries for CMD5\n", __FUNCTION__));
return ERROR;
}
*cmd_rsp = sd->card_rsp_data;
sdspi_crc_onoff(sd, sd_crc ? 1 : 0);
return (SUCCESS);
}
static int
sdspi_crc_onoff(sdioh_info_t *sd, bool use_crc)
{
uint32 args;
int status;
args = use_crc ? 1 : 0;
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma,
SDIOH_CMD_59, args, NULL, 0)) != SUCCESS) {
sd_err(("%s: No response to CMD59\n", __FUNCTION__));
}
sd_info(("CMD59 response data was: 0x%08x\n", sd->card_rsp_data));
sd_err(("SD-SPI CRC turned %s\n", use_crc ? "ON" : "OFF"));
return (SUCCESS);
}
static int
sdspi_client_init(sdioh_info_t *sd)
{
uint8 fn_ints;
sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
/* Start at ~400KHz clock rate for initialization */
if (!spi_start_clock(sd, 128)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
if (!sdspi_start_power(sd)) {
sd_err(("sdspi_start_power failed\n"));
return ERROR;
}
if (sd->num_funcs == 0) {
sd_err(("%s: No IO funcs!\n", __FUNCTION__));
return ERROR;
}
sdspi_card_enablefuncs(sd);
set_client_block_size(sd, 1, BLOCK_SIZE_4318);
fn_ints = INTR_CTL_FUNC1_EN;
if (sd->num_funcs >= 2) {
set_client_block_size(sd, 2, sd_f2_blocksize /* BLOCK_SIZE_4328 */);
fn_ints |= INTR_CTL_FUNC2_EN;
}
/* Enable/Disable Client interrupts */
/* Turn on here but disable at host controller */
if (sdspi_card_regwrite(sd, 0, SDIOD_CCCR_INTEN, 1,
(fn_ints | INTR_CTL_MASTER_EN)) != SUCCESS) {
sd_err(("%s: Could not enable ints in CCCR\n", __FUNCTION__));
return ERROR;
}
/* Switch to High-speed clocking mode if both host and device support it */
sdspi_set_highspeed_mode(sd, (bool)sd_hiok);
/* After configuring for High-Speed mode, set the desired clock rate. */
if (!spi_start_clock(sd, (uint16)sd_divisor)) {
sd_err(("spi_start_clock failed\n"));
return ERROR;
}
sd->card_init_done = TRUE;
return SUCCESS;
}
static int
sdspi_set_highspeed_mode(sdioh_info_t *sd, bool HSMode)
{
uint32 regdata;
int status;
bool hsmode;
if (HSMode == TRUE) {
sd_err(("Attempting to enable High-Speed mode.\n"));
if ((status = sdspi_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
1, &regdata)) != SUCCESS) {
return status;
}
if (regdata & SDIO_SPEED_SHS) {
sd_err(("Device supports High-Speed mode.\n"));
regdata |= SDIO_SPEED_EHS;
sd_err(("Writing %08x to Card at %08x\n",
regdata, SDIOD_CCCR_SPEED_CONTROL));
if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
1, regdata)) != BCME_OK) {
return status;
}
hsmode = 1;
sd_err(("High-speed clocking mode enabled.\n"));
}
else {
sd_err(("Device does not support High-Speed Mode.\n"));
hsmode = 0;
}
} else {
if ((status = sdspi_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
1, &regdata)) != SUCCESS) {
return status;
}
regdata = ~SDIO_SPEED_EHS;
sd_err(("Writing %08x to Card at %08x\n",
regdata, SDIOD_CCCR_SPEED_CONTROL));
if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
1, regdata)) != BCME_OK) {
return status;
}
sd_err(("Low-speed clocking mode enabled.\n"));
hsmode = 0;
}
spi_controller_highspeed_mode(sd, hsmode);
return TRUE;
}
bool
sdspi_start_power(sdioh_info_t *sd)
{
uint32 cmd_arg;
uint32 cmd_rsp;
sd_trace(("%s\n", __FUNCTION__));
/* Get the Card's Operation Condition. Occasionally the board
* takes a while to become ready
*/
cmd_arg = 0;
if (get_ocr(sd, &cmd_arg, &cmd_rsp) != SUCCESS) {
sd_err(("%s: Failed to get OCR; bailing\n", __FUNCTION__));
return FALSE;
}
sd_err(("mem_present = %d\n", GFIELD(cmd_rsp, RSP4_MEM_PRESENT)));
sd_err(("num_funcs = %d\n", GFIELD(cmd_rsp, RSP4_NUM_FUNCS)));
sd_err(("card_ready = %d\n", GFIELD(cmd_rsp, RSP4_CARD_READY)));
sd_err(("OCR = 0x%x\n", GFIELD(cmd_rsp, RSP4_IO_OCR)));
/* Verify that the card supports I/O mode */
if (GFIELD(cmd_rsp, RSP4_NUM_FUNCS) == 0) {
sd_err(("%s: Card does not support I/O\n", __FUNCTION__));
return ERROR;
}
sd->num_funcs = GFIELD(cmd_rsp, RSP4_NUM_FUNCS);
/* Examine voltage: Arasan only supports 3.3 volts,
* so look for 3.2-3.3 Volts and also 3.3-3.4 volts.
*/
if ((GFIELD(cmd_rsp, RSP4_IO_OCR) & (0x3 << 20)) == 0) {
sd_err(("This client does not support 3.3 volts!\n"));
return ERROR;
}
return TRUE;
}
static int
sdspi_driver_init(sdioh_info_t *sd)
{
sd_trace(("%s\n", __FUNCTION__));
if ((sdspi_host_init(sd)) != SUCCESS) {
return ERROR;
}
if (sdspi_client_init(sd) != SUCCESS) {
return ERROR;
}
return SUCCESS;
}
static int
sdspi_card_enablefuncs(sdioh_info_t *sd)
{
int status;
uint32 regdata;
uint32 regaddr, fbraddr;
uint8 func;
uint8 *ptr;
sd_trace(("%s\n", __FUNCTION__));
/* Get the Card's common CIS address */
ptr = (uint8 *) &sd->com_cis_ptr;
for (regaddr = SDIOD_CCCR_CISPTR_0; regaddr <= SDIOD_CCCR_CISPTR_2; regaddr++) {
if ((status = sdspi_card_regread (sd, 0, regaddr, 1, &regdata)) != SUCCESS)
return status;
*ptr++ = (uint8) regdata;
}
/* Only the lower 17-bits are valid */
sd->com_cis_ptr &= 0x0001FFFF;
sd->func_cis_ptr[0] = sd->com_cis_ptr;
sd_info(("%s: Card's Common CIS Ptr = 0x%x\n", __FUNCTION__, sd->com_cis_ptr));
/* Get the Card's function CIS (for each function) */
for (fbraddr = SDIOD_FBR_STARTADDR, func = 1;
func <= sd->num_funcs; func++, fbraddr += SDIOD_FBR_SIZE) {
ptr = (uint8 *) &sd->func_cis_ptr[func];
for (regaddr = SDIOD_FBR_CISPTR_0; regaddr <= SDIOD_FBR_CISPTR_2; regaddr++) {
if ((status = sdspi_card_regread (sd, 0, regaddr + fbraddr, 1, &regdata))
!= SUCCESS)
return status;
*ptr++ = (uint8) regdata;
}
/* Only the lower 17-bits are valid */
sd->func_cis_ptr[func] &= 0x0001FFFF;
sd_info(("%s: Function %d CIS Ptr = 0x%x\n",
__FUNCTION__, func, sd->func_cis_ptr[func]));
}
sd_info(("%s: write ESCI bit\n", __FUNCTION__));
/* Enable continuous SPI interrupt (ESCI bit) */
sdspi_card_regwrite(sd, 0, SDIOD_CCCR_BICTRL, 1, 0x60);
sd_info(("%s: enable f1\n", __FUNCTION__));
/* Enable function 1 on the card */
regdata = SDIO_FUNC_ENABLE_1;
if ((status = sdspi_card_regwrite(sd, 0, SDIOD_CCCR_IOEN, 1, regdata)) != SUCCESS)
return status;
sd_info(("%s: done\n", __FUNCTION__));
return SUCCESS;
}
/* Read client card reg */
static int
sdspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
{
int status;
uint32 cmd_arg;
uint32 rsp5;
cmd_arg = 0;
if ((func == 0) || (regsize == 1)) {
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_READ);
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, 0);
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_52, cmd_arg, NULL, 0))
!= SUCCESS)
return status;
sdspi_cmd_getrsp(sd, &rsp5, 1);
if (rsp5 != 0x00)
sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
__FUNCTION__, rsp5, func));
*data = sd->card_rsp_data >> 24;
} else {
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize);
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ);
sd->data_xfer_count = regsize;
/* sdspi_cmd_issue() returns with the command complete bit
* in the ISR already cleared
*/
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_53, cmd_arg, NULL, 0))
!= SUCCESS)
return status;
sdspi_cmd_getrsp(sd, &rsp5, 1);
if (rsp5 != 0x00)
sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
__FUNCTION__, rsp5, func));
*data = sd->card_rsp_data;
if (regsize == 2) {
*data &= 0xffff;
}
sd_info(("%s: CMD53 func %d, addr 0x%x, size %d, data 0x%08x\n",
__FUNCTION__, func, regaddr, regsize, *data));
}
return SUCCESS;
}
/* write a client register */
static int
sdspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
{
int status;
uint32 cmd_arg, rsp5, flags;
cmd_arg = 0;
if ((func == 0) || (regsize == 1)) {
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, data & 0xff);
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_52, cmd_arg, NULL, 0))
!= SUCCESS)
return status;
sdspi_cmd_getrsp(sd, &rsp5, 1);
flags = GFIELD(rsp5, RSP5_FLAGS);
if (flags && (flags != 0x10))
sd_err(("%s: rsp5.rsp5.flags = 0x%x, expecting 0x10\n",
__FUNCTION__, flags));
}
else {
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize);
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr);
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
sd->data_xfer_count = regsize;
sd->cmd53_wr_data = data;
sd_info(("%s: CMD53 func %d, addr 0x%x, size %d, data 0x%08x\n",
__FUNCTION__, func, regaddr, regsize, data));
/* sdspi_cmd_issue() returns with the command complete bit
* in the ISR already cleared
*/
if ((status = sdspi_cmd_issue(sd, sd->sd_use_dma, SDIOH_CMD_53, cmd_arg, NULL, 0))
!= SUCCESS)
return status;
sdspi_cmd_getrsp(sd, &rsp5, 1);
if (rsp5 != 0x00)
sd_err(("%s: rsp5 flags = 0x%x, expecting 0x00\n",
__FUNCTION__, rsp5));
}
return SUCCESS;
}
void
sdspi_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count /* num 32 bit words */)
{
*rsp_buffer = sd->card_response;
}
int max_errors = 0;
#define SPI_MAX_PKT_LEN 768
uint8 spi_databuf[SPI_MAX_PKT_LEN];
uint8 spi_rspbuf[SPI_MAX_PKT_LEN];
/* datalen is used for CMD53 length only (0 for sd->data_xfer_count) */
static int
sdspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg,
uint32 *data, uint32 datalen)
{
uint32 cmd_reg;
uint32 cmd_arg = arg;
uint8 cmd_crc = 0x95; /* correct CRC for CMD0 and don't care for others. */
uint16 dat_crc;
uint8 cmd52data = 0;
uint32 i, j;
uint32 spi_datalen = 0;
uint32 spi_pre_cmd_pad = 0;
uint32 spi_max_response_pad = 128;
cmd_reg = 0;
cmd_reg = SFIELD(cmd_reg, SPI_DIR, 1);
cmd_reg = SFIELD(cmd_reg, SPI_CMD_INDEX, cmd);
if (GFIELD(cmd_arg, CMD52_RW_FLAG) == 1) { /* Same for CMD52 and CMD53 */
cmd_reg = SFIELD(cmd_reg, SPI_RW, 1);
}
switch (cmd) {
case SDIOH_CMD_59: /* CRC_ON_OFF (SPI Mode Only) - Response R1 */
cmd52data = arg & 0x1;
case SDIOH_CMD_0: /* Set Card to Idle State - No Response */
case SDIOH_CMD_5: /* Send Operation condition - Response R4 */
sd_trace(("%s: CMD%d\n", __FUNCTION__, cmd));
spi_datalen = 44;
spi_pre_cmd_pad = 12;
spi_max_response_pad = 28;
break;
case SDIOH_CMD_3: /* Ask card to send RCA - Response R6 */
case SDIOH_CMD_7: /* Select card - Response R1 */
case SDIOH_CMD_15: /* Set card to inactive state - Response None */
sd_err(("%s: CMD%d is invalid for SPI Mode.\n", __FUNCTION__, cmd));
return ERROR;
break;
case SDIOH_CMD_52: /* IO R/W Direct (single byte) - Response R5 */
cmd52data = GFIELD(cmd_arg, CMD52_DATA);
cmd_arg = arg;
cmd_reg = SFIELD(cmd_reg, SPI_FUNC, GFIELD(cmd_arg, CMD52_FUNCTION));
cmd_reg = SFIELD(cmd_reg, SPI_ADDR, GFIELD(cmd_arg, CMD52_REG_ADDR));
/* Display trace for byte write */
if (GFIELD(cmd_arg, CMD52_RW_FLAG) == 1) {
sd_trace(("%s: CMD52: Wr F:%d @0x%04x=%02x\n",
__FUNCTION__,
GFIELD(cmd_arg, CMD52_FUNCTION),
GFIELD(cmd_arg, CMD52_REG_ADDR),
cmd52data));
}
spi_datalen = 32;
spi_max_response_pad = 28;
break;
case SDIOH_CMD_53: /* IO R/W Extended (multiple bytes/blocks) */
cmd_arg = arg;
cmd_reg = SFIELD(cmd_reg, SPI_FUNC, GFIELD(cmd_arg, CMD53_FUNCTION));
cmd_reg = SFIELD(cmd_reg, SPI_ADDR, GFIELD(cmd_arg, CMD53_REG_ADDR));
cmd_reg = SFIELD(cmd_reg, SPI_BLKMODE, 0);
cmd_reg = SFIELD(cmd_reg, SPI_OPCODE, GFIELD(cmd_arg, CMD53_OP_CODE));
cmd_reg = SFIELD(cmd_reg, SPI_STUFF0, (sd->data_xfer_count>>8));
cmd52data = (uint8)sd->data_xfer_count;
/* Set upper bit in byte count if necessary, but don't set it for 512 bytes. */
if ((sd->data_xfer_count > 255) && (sd->data_xfer_count < 512)) {
cmd_reg |= 1;
}
if (GFIELD(cmd_reg, SPI_RW) == 1) { /* Write */
spi_max_response_pad = 32;
spi_datalen = (sd->data_xfer_count + spi_max_response_pad) & 0xFFFC;
} else { /* Read */
spi_max_response_pad = 32;
spi_datalen = (sd->data_xfer_count + spi_max_response_pad) & 0xFFFC;
}
sd_trace(("%s: CMD53: %s F:%d @0x%04x len=0x%02x\n",
__FUNCTION__,
(GFIELD(cmd_reg, SPI_RW) == 1 ? "Wr" : "Rd"),
GFIELD(cmd_arg, CMD53_FUNCTION),
GFIELD(cmd_arg, CMD53_REG_ADDR),
cmd52data));
break;
default:
sd_err(("%s: Unknown command %d\n", __FUNCTION__, cmd));
return ERROR;
}
/* Set up and issue the SDIO command */
memset(spi_databuf, SDSPI_IDLE_PAD, spi_datalen);
spi_databuf[spi_pre_cmd_pad + 0] = (cmd_reg & 0xFF000000) >> 24;
spi_databuf[spi_pre_cmd_pad + 1] = (cmd_reg & 0x00FF0000) >> 16;
spi_databuf[spi_pre_cmd_pad + 2] = (cmd_reg & 0x0000FF00) >> 8;
spi_databuf[spi_pre_cmd_pad + 3] = (cmd_reg & 0x000000FF);
spi_databuf[spi_pre_cmd_pad + 4] = cmd52data;
/* Generate CRC7 for command, if CRC is enabled, otherwise, a
* default CRC7 of 0x95, which is correct for CMD0, is used.
*/
if (sd_crc) {
cmd_crc = sdspi_crc7(&spi_databuf[spi_pre_cmd_pad], 5);
}
spi_databuf[spi_pre_cmd_pad + 5] = cmd_crc;
#define SPI_STOP_TRAN 0xFD
/* for CMD53 Write, put the data into the output buffer */
if ((cmd == SDIOH_CMD_53) && (GFIELD(cmd_arg, CMD53_RW_FLAG) == 1)) {
if (datalen != 0) {
spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD;
spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK;
for (i = 0; i < sd->data_xfer_count; i++) {
spi_databuf[i + 11 + spi_pre_cmd_pad] = ((uint8 *)data);
}
if (sd_crc) {
dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], i);
} else {
dat_crc = 0xAAAA;
}
spi_databuf[i + 11 + spi_pre_cmd_pad] = (dat_crc >> 8) & 0xFF;
spi_databuf[i + 12 + spi_pre_cmd_pad] = dat_crc & 0xFF;
} else if (sd->data_xfer_count == 2) {
spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD;
spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK;
spi_databuf[spi_pre_cmd_pad + 11] = sd->cmd53_wr_data & 0xFF;
spi_databuf[spi_pre_cmd_pad + 12] = (sd->cmd53_wr_data & 0x0000FF00) >> 8;
if (sd_crc) {
dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], 2);
} else {
dat_crc = 0x22AA;
}
spi_databuf[spi_pre_cmd_pad + 13] = (dat_crc >> 8) & 0xFF;
spi_databuf[spi_pre_cmd_pad + 14] = (dat_crc & 0xFF);
} else if (sd->data_xfer_count == 4) {
spi_databuf[spi_pre_cmd_pad + 9] = SDSPI_IDLE_PAD;
spi_databuf[spi_pre_cmd_pad + 10] = SDSPI_START_BLOCK;
spi_databuf[spi_pre_cmd_pad + 11] = sd->cmd53_wr_data & 0xFF;
spi_databuf[spi_pre_cmd_pad + 12] = (sd->cmd53_wr_data & 0x0000FF00) >> 8;
spi_databuf[spi_pre_cmd_pad + 13] = (sd->cmd53_wr_data & 0x00FF0000) >> 16;
spi_databuf[spi_pre_cmd_pad + 14] = (sd->cmd53_wr_data & 0xFF000000) >> 24;
if (sd_crc) {
dat_crc = sdspi_crc16(&spi_databuf[spi_pre_cmd_pad+11], 4);
} else {
dat_crc = 0x44AA;
}
spi_databuf[spi_pre_cmd_pad + 15] = (dat_crc >> 8) & 0xFF;
spi_databuf[spi_pre_cmd_pad + 16] = (dat_crc & 0xFF);
} else {
printf("CMD53 Write: size %d unsupported\n", sd->data_xfer_count);
}
}
spi_sendrecv(sd, spi_databuf, spi_rspbuf, spi_datalen);
for (i = spi_pre_cmd_pad + SDSPI_COMMAND_LEN; i < spi_max_response_pad; i++) {
if ((spi_rspbuf & SDSPI_START_BIT_MASK) == 0) {
break;
}
}
if (i == spi_max_response_pad) {
sd_err(("%s: Did not get a response for CMD%d\n", __FUNCTION__, cmd));
return ERROR;
}
/* Extract the response. */
sd->card_response = spi_rspbuf;
/* for CMD53 Read, find the start of the response data... */
if ((cmd == SDIOH_CMD_53) && (GFIELD(cmd_arg, CMD52_RW_FLAG) == 0)) {
for (; i < spi_max_response_pad; i++) {
if (spi_rspbuf == SDSPI_START_BLOCK) {
break;
}
}
if (i == spi_max_response_pad) {
printf("Did not get a start of data phase for CMD%d\n", cmd);
max_errors++;
sdspi_abort(sd, GFIELD(cmd_arg, CMD53_FUNCTION));
}
sd->card_rsp_data = spi_rspbuf[i+1];
sd->card_rsp_data |= spi_rspbuf[i+2] << 8;
sd->card_rsp_data |= spi_rspbuf[i+3] << 16;
sd->card_rsp_data |= spi_rspbuf[i+4] << 24;
if (datalen != 0) {
i++;
for (j = 0; j < sd->data_xfer_count; j++) {
((uint8 *)data)[j] = spi_rspbuf[i+j];
}
if (sd_crc) {
uint16 recv_crc;
recv_crc = spi_rspbuf[i+j] << 8 | spi_rspbuf[i+j+1];
dat_crc = sdspi_crc16((uint8 *)data, datalen);
if (dat_crc != recv_crc) {
sd_err(("%s: Incorrect data CRC: expected 0x%04x, "
"received 0x%04x\n",
__FUNCTION__, dat_crc, recv_crc));
}
}
}
return SUCCESS;
}
sd->card_rsp_data = spi_rspbuf[i+4];
sd->card_rsp_data |= spi_rspbuf[i+3] << 8;
sd->card_rsp_data |= spi_rspbuf[i+2] << 16;
sd->card_rsp_data |= spi_rspbuf[i+1] << 24;
/* Display trace for byte read */
if ((cmd == SDIOH_CMD_52) && (GFIELD(cmd_arg, CMD52_RW_FLAG) == 0)) {
sd_trace(("%s: CMD52: Rd F:%d @0x%04x=%02x\n",
__FUNCTION__,
GFIELD(cmd_arg, CMD53_FUNCTION),
GFIELD(cmd_arg, CMD53_REG_ADDR),
sd->card_rsp_data >> 24));
}
return SUCCESS;
}
/*
* On entry: if single-block or non-block, buffer size <= block size.
* If multi-block, buffer size is unlimited.
* Question is how to handle the left-overs in either single- or multi-block.
* I think the caller should break the buffer up so this routine will always
* use block size == buffer size to handle the end piece of the buffer
*/
static int
sdspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, uint32 addr, int nbytes, uint32 *data)
{
int status;
uint32 cmd_arg;
uint32 rsp5;
int num_blocks, blocksize;
bool local_blockmode, local_dma;
bool read = rw == SDIOH_READ ? 1 : 0;
ASSERT(nbytes);
cmd_arg = 0;
sd_data(("%s: %s 53 func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
__FUNCTION__, read ? "Rd" : "Wr", func, fifo ? "FIXED" : "INCR",
addr, nbytes, sd->r_cnt, sd->t_cnt));
if (read) sd->r_cnt++; else sd->t_cnt++;
local_blockmode = sd->sd_blockmode;
local_dma = sd->sd_use_dma;
/* Don't bother with block mode on small xfers */
if (nbytes < sd->client_block_size[func]) {
sd_info(("setting local blockmode to false: nbytes (%d) != block_size (%d)\n",
nbytes, sd->client_block_size[func]));
local_blockmode = FALSE;
local_dma = FALSE;
}
if (local_blockmode) {
blocksize = MIN(sd->client_block_size[func], nbytes);
num_blocks = nbytes/blocksize;
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, num_blocks);
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 1);
} else {
num_blocks = 1;
blocksize = nbytes;
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, nbytes);
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
}
if (fifo)
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 0);
else
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, addr);
if (read)
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ);
else
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
sd->data_xfer_count = nbytes;
if ((func == 2) && (fifo == 1)) {
sd_data(("%s: %s 53 func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
__FUNCTION__, read ? "Rd" : "Wr", func, fifo ? "FIXED" : "INCR",
addr, nbytes, sd->r_cnt, sd->t_cnt));
}
/* sdspi_cmd_issue() returns with the command complete bit
* in the ISR already cleared
*/
if ((status = sdspi_cmd_issue(sd, local_dma,
SDIOH_CMD_53, cmd_arg,
data, nbytes)) != SUCCESS) {
sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, (read ? "read" : "write")));
return status;
}
sdspi_cmd_getrsp(sd, &rsp5, 1);
if (rsp5 != 0x00) {
sd_err(("%s: rsp5 flags = 0x%x, expecting 0x00\n",
__FUNCTION__, rsp5));
return ERROR;
}
return SUCCESS;
}
static int
set_client_block_size(sdioh_info_t *sd, int func, int block_size)
{
int base;
int err = 0;
sd_err(("%s: Setting block size %d, func %d\n", __FUNCTION__, block_size, func));
sd->client_block_size[func] = block_size;
/* Set the block size in the SDIO Card register */
base = func * SDIOD_FBR_SIZE;
err = sdspi_card_regwrite(sd, 0, base + SDIOD_CCCR_BLKSIZE_0, 1, block_size & 0xff);
if (!err) {
err = sdspi_card_regwrite(sd, 0, base + SDIOD_CCCR_BLKSIZE_1, 1,
(block_size >> 8) & 0xff);
}
/*
* Do not set the block size in the SDIO Host register; that
* is func dependent and will get done on an individual
* transaction basis.
*/
return (err ? BCME_SDIO_ERROR : 0);
}
/* Reset and re-initialize the device */
int
sdioh_sdio_reset(sdioh_info_t *si)
{
si->card_init_done = FALSE;
return sdspi_client_init(si);
}
#define CRC7_POLYNOM 0x09
#define CRC7_CRCHIGHBIT 0x40
static uint8 sdspi_crc7(unsigned char* p, uint32 len)
{
uint8 c, j, bit, crc = 0;
uint32 i;
for (i = 0; i < len; i++) {
c = *p++;
for (j = 0x80; j; j >>= 1) {
bit = crc & CRC7_CRCHIGHBIT;
crc <<= 1;
if (c & j) bit ^= CRC7_CRCHIGHBIT;
if (bit) crc ^= CRC7_POLYNOM;
}
}
/* Convert the CRC7 to an 8-bit SD CRC */
crc = (crc << 1) | 1;
return (crc);
}
#define CRC16_POLYNOM 0x1021
#define CRC16_CRCHIGHBIT 0x8000
static uint16 sdspi_crc16(unsigned char* p, uint32 len)
{
uint32 i;
uint16 j, c, bit;
uint16 crc = 0;
for (i = 0; i < len; i++) {
c = *p++;
for (j = 0x80; j; j >>= 1) {
bit = crc & CRC16_CRCHIGHBIT;
crc <<= 1;
if (c & j) bit ^= CRC16_CRCHIGHBIT;
if (bit) crc ^= CRC16_POLYNOM;
}
}
return (crc);
} |
|