马上注册,结交更多好友,享用更多功能,让你轻松玩转社区
您需要 登录 才可以下载或查看,没有账号?立即注册
×
本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。
尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz 的电压反馈运放。选择增益带宽小于20MHz 的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板 (PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz 的运放、实际设计并构建真实世界电路中得来的。
本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。
图1.0 稳定性分析工具箱
图字(上、下):数据资料信息、技巧、经验、Tina SPICE 仿真、测试;
目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE 仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性;
注:用于统一增益带宽小于20MHz 的电压反馈运放的技巧与经验法则。
1.1 波特图(曲线)基础
幅度曲线的频率响应是电压增益改变与频率改变的关系。这种关系可用波特图上一条以分贝 (dB) 来表示的电压增益比频率 (Hz) 曲线来描述。波特幅度图被绘成一种半对数曲线:x 轴为采用对数刻度的频率 (Hz)、y 轴则为采用线性刻度的电压增益 (dB) ,y轴最好是采用方便的每主格45°刻度。波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率 (Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。
图 1.1 幅度与相位波特曲线(图)
图字(上、下):Aol曲线、幅度曲线、频率、相位曲线。
幅度波特图要求将电压增益转换成分贝 (dB) 。进行增益分析时,我们将采用以dB(定义为20Log10A)表示的电压增益,其中A为以伏/伏表示的电压增益。
图1.2 幅度波特曲线分贝(dB) 定义
图1.3 定义一些常用的波特图术语:
图1.3 更多波特曲线定义
图字(上、下):roll-off rate(下降速率)——增益随频率减小;decade(十倍频程)——频率按x10增加或按x1/10 减小,从10Hz到100 Hz为一个decade(十倍频程);octave(倍频程)——频率按x2增加或按x1/2减小,从10Hz 到20 Hz为一个octave(倍频程);
在电压增益波特图上,增益随频率变化的斜线可定义成按 +20dB/decade 或-20dB/decade 增加或减小。另一种描述同样斜线的方法是按 +6dB/octave 或 -6dB/octave 增加或减小(参见图1.4)
以下推导证明了20dB/decade 与 6dB/octave 的等效性:
ΔA(dB) = A(dB) at fb – A(dB) at fa
ΔA(dB) = [Aol(dB) - 20log10(fb/f1)] – [Aol(dB) - 20log10(fa/f1)]
ΔA(dB) = Aol(dB) - 20log10(fb/f1) – Aol(dB) + 20log10(fa/f1)]
ΔA(dB) = 20log10(fa/f1) – 20Log10(fb/f1)]
ΔA(dB) = 20log10(fa/fb)
ΔA(dB) = 20log10(1k/10k) = -20dB/decade
ΔA(dB) = 20log10(fb/fc)极点:单个极点响应在波特图(幅度或增益曲线)上具有按 -20dB/decade或 -6db/octave斜率下降的特点。在极点位置,增益为直流增益减去3dB。在相位曲线上,极点在频率fP上具有-45°的相移。相位在fP的两边以 -45°/decade的斜率变化为0°和-90°。单极点可用图1.5中的简单RC低通网络来表示。请注意极点相位是如何影响直到高于(或低于)极点频率10倍频程处的频率的。
图1.5 极点:波特曲线幅度与相位
图字:实际函数、直线近似、频率; 单极点电路等效电路图
极点位置= fp
幅度= -20dB/decade 斜线
- 斜线从fP处开始、并继续随频率增加而下降
- 实际函数= -3dB down @ fp
相位= -45°/decade斜率通过fp
- fp以上10 倍频程处相位= -90°
- fp以下10 倍频程处相位= 0°
零点:单个零点响应在波特图(幅度或增益曲线)上具有按 +20dB/decade或+6db/octave斜率上升(对应于下
降)的特点。在零点位置,增益为直流增益加3dB。在相位曲线上,零点在其频率fz上具有+45°的相移。相位在fz
的两边以+45°/decade斜率变化为0°与+90°。单零点可用图1.6 中的简单RC高通网络来表示。请注意零点相位是
如何影响直到高于(或低于)零点频率10 倍频程处的频率的。
图1.6 零点:波特曲线幅度与相位
图字:实际函数、直线近似、频率; 单零点电路等效电路图
零点位置= fz
幅度= +20dB/decade 斜线
- 斜线从fz开始、并继续随频率增加而上升
- 实际函数= -3dB up @ fz
相位= +45°/decade斜率通过fz
- fz以上10 倍频程处相位=+90°
- fz以下10 倍频程处相位= 0°
在波特幅度图上,很容易测量给定极点或零点的频率。由于x 轴为频率的对数刻度,故这种技术允许用距离比来准确及迅速地确定感兴趣的极点或零点的频率。图1.7 显示这种“对数刻度技巧”。
图1.7 对数刻度技巧
Log Scale Trick (fP = ?):
1) Given: L = 1cm; D = 2cm
2) L/D = Log10(fP)
3) fP = Log10
-1(L/D) = 10(L/D)
L = Log10(fp’) x D
fP = 10(L/D) = 10(1cm/2cm) = 3.16
4) Adjust for the decade range
working within –
10Hz-100Hz decade
fP = 31.6Hz
5)L = Log10 (3.16) x 2cm = 1cm
where fp’ = fp normalized to the
1-10 decade range –
图字:fp=?、频率; 对数刻度技巧 (fp=?)
1) 假设L=1cm, D=2cm
2) L/D=log10(fp)
3) ….
4) 对应的十倍频程内的频率为fp= 31.6Hz
5) ……,其中fp’为fp对1-10 十倍频程归一化后
的频率,fp=31.6,fp’=3.16
1.2 直观元件模型
大多数运放应用都采用四种关键元件的组合,即:运放、电阻、电容和电感。为便于进行稳定性分析,最好是能拥有这些关键元件的“直观模型”。
用于交流稳定性分析的直观运放模型如图1.8 所示。IN+ 与 IN- 端之间的差分电压先被放大1 倍并转化为单端交流
电压源VDIFF, VDIFF然后再被放大K(f) 倍,其中K(f) 代表数据资料中的Aol(开环增益比频率曲线)。由此得到的
电压VO再后接运放开环、交流小信号及输出电阻RO。电压通过RO后即为VOUT。
图1.8 直观运放模型
图1.9 定义用于交流稳定性分析的直观电阻模型。无论其工作频率如何,电阻均具有恒定的阻值。
图1.9 直观电阻模型
图1.10 定义用于交流稳定性分析的直观电容模型,包括三个不同的工作区。在“直流”区,电容将被看成是开路。在“高频”区,电容则被看成是短路。在这二者之间,电容将被看成是一个受频率控制的电阻(阻抗1/Xc 随频率增加而减小)。图1.11 所示的SPICE 仿真结果显示直观电容模型随频率变化的关系。
图1.10 直观电容模型
图1.11 直观电容模型SPICE 仿真 (个人小结:此为常见的阻抗图)
图1.12 定义用于交流稳定性分析的直观电感模型,包括三个不同的工作区。在“直流”区,电感将被看成是短路。在“高频”区,电感则被看成是开路。在这二者之间,电感将被看成是一个受频率控制的电阻(阻抗XL随频率增加而增加)。图1.13 所示的SPICE仿真结果显示出直观电感模型随频率变化的关系。
图1.12 直观电感模型
图1.13 直观电感模型SPICE 仿真
1.3 稳定性标准
图1.14 的下部显示代表一个带反馈运放电路的传统控制环路模型框图;上部显示与控制环路模型相对应的典型带反馈运放电路。我们将这种带反馈运放电路称为“运放环路增益模型”。请注意,Aol为运放数据资料Aol,且为运放的开环增益。β为从VOUT上作为反馈返回的输出电压量。本例中的β网络为一个电阻反馈网络。
在推导VOUT/VIN时,我们能看到,可直接用Aol 及 β来定义闭环增益函数。
图1.14 运放环路增益模型
图字:Aol:开环增益;β:反馈系数;Acl:闭环增益
从图1.14 所示的运放开环增益模型中,我们能得出稳定闭环运放电路的标准。详细推导如图1.15所示。在频率fcl 上,环路增益 (Aolβ) 为1 或0dB,如果环路增益相移为+/-180°,则电路不稳定!在fcl 上,环路增益相移距离180°的相位称为环路增益相位余量。)对于临界阻尼表现良好的闭环响应,我们要求环路增益相位余量大于45°。
图1.15 稳定性标准推导 个人小结:闭环增益无穷大时,在输入端任何足够小的躁动都会在输出端产生足够大的输出;而此输出反馈到输入端将导致更大的噪声输出而产生振荡现象,直至运放饱和截止。
图字:
VOUT/VIN= Aol/(1+ Aolβ)
如果:Aolβ= -1
则:VOUT/VIN= Aol/0 → ∞
如果:VOUT/VIN= ∞ → 无穷大增益
则VIN中任何小的变化都会导致VOUT中的很大变化,而这又会反馈给VIN并导致VOUT中更大的变化 → 振荡 → 不稳定!!
Aolβ:环路增益
Aolβ= -1 → +/-180°相移,幅度为1 (0dB)
fcl:Aolβ= 1 (0dB) 时的频率
稳定性标准:
在Aolβ= 1 (0dB) 时的fcl 频率上,相移< +/-180°
所需相位余量(离+/-180°相移的距离)≥ 45°
1.4 环路稳定性测试
由于环路稳定性由环路增益 (Aolβ) 的幅度与相位曲线决定,因此我们需要知道如何才能方便地分析环路增益幅度与相位。为做到这一点,我们需要打破闭环运放电路,并将一个小信号交流源插入到环路中,然后再测量幅度与相位并绘出完整的环路增益曲线图。图1.16 显示运放环路增益控制模型的等效控制环路框图、以及我们准备用于环路增益测试的技术。
图1.16 传统环路增益测试
图字(上、下):
运放环路增益模型:运放为“闭环”
环路增益测试:在VOUT、地与VIN之间将环路打破,并插入一个交流源Vx,Aolβ=Vr / Vx在分析用SPICE 仿真构建的电路时,传统环路增益法利用一个电感及电容将闭环运放电路打破。很大的电感值可确保环路在直流上闭合(要求SPICE 仿真能在进行交流分析以前先计算出直流工作点),但在感兴趣的交流频率上打开。很大的电容值可确保交流小信号源与直流隔开,但可直接与感兴趣的频率相连。图1.17 显示用于传统环路增益测试的SPICE 设置示意图。
图1.17 传统环路增益测试 – SPICE 设置
图(上、下):
运放环路增益模型:运放为“闭环”
SPICE环路增益测试:在VOUT、地与VIN之间将环路打破,并插入一个交流源Vx,Aolβ=Vr / Vx在用SPICE 仿真一个电路之前,我们想知道近似结果如何。请记住GIGO(垃圾进,垃圾出)!!贝它 (β) 及其倒数 (1/β) 连同数据资料Aol 曲线,可在运行SPICE 以前为我们提供一种用于环路增益分析一阶近似的强大方法。在后续几节中,我们将介绍计算 (β) 及其倒数 (1/β) 的技巧与经验。图1.18 定义运放电路的贝它 (β) 网络。
图1.18 运放β 网络
Aol曲线上叠加的1/β曲线,可提供环路增益 (Aolβ) 曲线究竟如何的清晰画面。这是动态分析的基础!! 从图1.19 中的推导中,我们可清楚地看出,当我们以dB值来在Aol曲线上绘出1/β时,Aolβ幅度曲线即为Aol 与1/β之差。请注意,Aolβ随频率的增加而减小。 Aolβ是用于纠正VOUT/VIN或闭环响应中误差的增益。误差与此成倒数关系 因此,随着Aolβ减小,VOUT/VIN响应精度降低,直Aolβ降为 0dB、而VOUT/VIN响应完全跟随Aol为止。
图1.19 取自Aol 曲线与1/β 曲线的环路增益信息
图字(上、下):开环响应Aol、Aolβ(环路增益)、频率;运放Aol 上(以dB 表示)绘出1/β(以dB 表示)、闭环响应1/β ≈ Aol。
一旦我们在Aol 上绘出1/β,有一种称为“闭合速度” 的简单一阶稳定性检查法。 此为最简单判别方法!!ROC为其简称 这种闭合速度稳定性检查,定义为1/β 曲线与Aol 曲线在fcl 上(此时环路增益为0dB)的“闭合速度”。 即在交叉频率处! 40db/decade 的闭合速度意味着不稳定,因为它意味着在fcl 以前有两个极点,而这可能意味着180°的相移。图1.20 给出了4 个例子,并将其各自的闭合速度计算如下:
fcl1: Aol-1/β1 = -20dB/decade - +20dB/decade = -40dB/decade ◊ 40dB/decade 闭合速度与不稳定
fcl2: Aol-1/β2 = -20dB/decade - 0dB/decade = -20dB/decade ◊ 20dB/decade 闭合速度与稳定
fcl3: Aol-1/β3 = -40dB/decade - 0dB/decade = -40dB/decade ◊ 40dB/decade 闭合速度与不稳定
fcl4: Aol-1/β4 = -40dB/decade - -20dB/decade = -20dB/decade ◊ 20dB/decade 闭合速度与稳定
图1.20 环路增益稳定性闭合速度测试
1.5 环路增益稳定性举例
环路增益分析举例(图1.21)用来说明我们如何能从绘制在Aol 曲线上的1/β 曲线来分析运放的稳定性。这里,随着频率的增加,电容CF 逐渐趋于短路,从而分别随频率的增加而降低β 曲线的幅度(亦即电压反馈随频率增加而减小)或抬高1/β 曲线的幅度。从闭合速度标准来看,我们预计该电路不稳定。
图1.21 环路增益稳定性举例
从Aol 曲线上的1/β 曲线,我们能绘出Aolβ(环路增益)幅度曲线(图1.22)。 从其差值间距来计算即可! 从环路增益幅度曲线,我们又能绘出环路增益相位曲线。从Aol 曲线上的1/β 曲线绘出Aolβ 曲线的规则很简单: Aol 曲线上的极点和零点即为Aolβ 曲线上的极点和零点;1/β 曲线上的极点和零点则为Aolβ 曲线上的零点与极点。 很形象简洁!! 记住这一点的一种简单方法是,β 用于Aolβ 曲线,而1/β 为β 的倒数,因此我们预计Aolβ 曲线会采用1/β 曲线上极点与零点的倒数,而极点的倒数为零点,零点的倒数为极点。
图1.22 得自Aol 曲线与1/β 曲线的的闭环增益
图字: 在fcl上:
相移= -180°
相位余量= 0
为从Aol 及1/β 曲线绘出Aolβ 曲线:
Aol 曲线上的极点为Aolβ(环路增益)曲线上极点
Aol 曲线上的极点为Aolβ(环路增益)曲线上极点
1/β 曲线上的极点为Aolβ(环路增益)曲线上零点
1/β 曲线上的零点为Aolβ(环路增益)曲线上极点
(请记住:β 为1/β 的倒数)
1.6 1/β 与闭环响应
VOUT/VIN闭环响应并非总是和1/β一样。在图1.23 的示例中,我们可看出,交流小信号反馈受与RI并联的Rn-Cn网络的影响。随着频率的增加,我们看到该网络修改的结果反映在Aol曲线上的1/β曲线中。因此可将本例看成是一个反相取和运放电路。我们将通过RI的VIN与通过Rn-Cn网络到地的信号相加。VOUT/VIN在低频上不会受此Rn-Cn网络的影响,且所需增益可看成是20dB。随着环路增益 (Aolβ) 被Rn-Cn网络拉低至1 (0dB),即没有环路增益用于纠正误差,而VOUT/VIN则会在fcl以上频率上跟随Aol曲线。 这一点需要仔细注意!
图1.23 VOUT/VIN 比 1/β
图字(上下、左右):Aol、SSBW(小信号带宽);在fcl上Aolβ=0(dB)、无环路增益用于纠正误差、VOUT/VIN响应跟随Aol曲
线;注:1/β为运放交流小信号闭环增益、VOUT/VIN常常与1/β不同。 |