|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区
您需要 登录 才可以下载或查看,没有账号?立即注册
×
运算放大器输出级极限
运算放大器的轨至轨运行是指其输入级或输出级,或者是指其输入级与输出级。作为驱动 SAR ADC输入端的一个缓冲器,我们更关注运算放大器轨至轨的输出能力。一般说来,该输出能力表明了输出级能够接近电源轨的程度。
通常情况下,当信号振幅增大时,低频信号 (1kHz)、总谐波失真保持不变。只有当输出电压和电源轨之间的差值低于 10mV 时,才会导致性能显著下降。而当输出信号频率增加时,输出电压和电源电压之间的差值也会随之增大。
对于 10kHz 的信号而言,当上述电压差值低于 200mV时,相关性能才开始下降;对于 20kHz 的信号而言,当上述电压差值低于 300mV 时,相关性能才开始下降;以此类推。考虑到运算放大器的输出级极限,这些测量结果将有助于确定 SAR ADC 电路的最佳工作点。
RC 负载对运算放大器的影响
对于最佳的 AC 性能,运算放大器的输出信号摆幅介于 450mV ~ 4.55V 之间。用于驱动 SAR ADC 运算放大器的第二个重要参数就是要找出其驱动不同的 RC 负载的极限。推荐在 ADC 输入端采用 RC 滤波器限制输入噪声的带宽,并帮助运算放大器驱动由 SAR ADC 产生的开关电容负载。图 1 示出了测试调整电路帮助确定具有 RC 负载的运算放大器的驱动极限。
首先,将RC电路的截止频率定为1.5MHz。这一频率限额是以在未来设计中将要采用的ADC预期采集时间为基础设定的。另外,如欲保持截止频率不变,则应采用不同 RC 组合和不同信号频率的测量工作。
对于较低的频率而言,使用较小阻值的电阻或较大容量的电容器。当信号频率增大时,阻值较大的电阻应与容量较小的电容器配合使用,以保持相关性能的稳定。
ADC 输入的非线性特性
减小输出电压摆幅将有助于保持运算放大器的性能,但还应考虑信号的完整性及其对不同系统组件的影响,随后可向ADC输入端发送一个信号。图2为常见的SAR ADC 输入级。在流经输入静电放电 (ESD) 保护二极管之后,则可对一个采样电容器和两个场效应晶体管 (FET) 开关中的信号进行采样。
如果采用了理想的组件,本设计不会对采样阶段的运算放大器的驱动产生任何影响。遗憾的是,这些组件并非理想的解决方案,特别是临近电源轨的等效负载非线性特性,向缓冲电路提出了新的挑战。
减小从运算放大器至ADC输入端的信号摆幅,将带来诸多益处。在运算放大器的输出端应用5VPP的信号将减弱总谐波失真(THD)。
另外,在 SAR ADC的输入端应用5VPP的信号时,要求运算放大器拥有强大的驱动能力。以2.5V的偏移量,将信号电平从5VPP减小到4.1VPP,将同时为正、负电源轨增加450mV的裕度。
另一个问题是:ADC的满量程衰减。在ADC产品说明书中,转换器的额定电源电压为5V,其额定满量程 (FSR) 为一个5VPP的信号。
注意,ADC的输入FSR取决于应用参考电压,可以针对新的运行条件,对FSR进行调整。当使用的参考电压为2.5V时,对于ADS8361而言,在2.5V或5VPP时FSR 输入信号将为 ±2.5V。
将参考电压调整为2.048V 后,在2.5V或4.1VPP时,新的(调整后的)FSR 输入信号将为 ±2.048V。现在,在4.1VPP的输入信号中,我们就有了一个全16位的转换功能,而无需衰减动态范围。
采集时间与吞吐率之间的关系
当选择 ADC 时,最重要的参数就是速度或吞吐率。该参数是采集(采样)时间和转换时间的组合。当转换时间的缩短超过产品说明书中规定的限额时,将严重影响 ADC 的性能。采集时间决定着为采样电容器充电的快慢,以达到规定的吞吐率。
在采集时间临近结束时,输入采样开关开启,转换过程随即开始。在转换周期即将结束时,从 ADC 所获得的数据等同于转换周期开始时(或采集周期结束时)采样电容器上的电压。不论 ADC 性能多么优秀,如果没有足够的时间对采样电容器进行充分的充电,那么转换结果将会出现与实际模拟输入信号不符的情况。
为了在系统设计期间控制上述参数,有两种方法可供选择:
1)采用输出阻抗低、运行速度快的运算放大器
2)在 ADC 模拟输入端采用高截止频率的 RC 滤波器。 |
|