TA的每日心情 | 衰 2024-10-6 20:55 |
---|
签到天数: 1 天 [LV.1]初来乍到
二级逆天
- 积分
- 1392
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区
您需要 登录 才可以下载或查看,没有账号?立即注册
×
[paragraph]μVision是德国Keil公司开发的单片机IDE软件,最初主要用于8051系列单片机,目前也有支持ARM系列单片机的专用版本MDK-ARM。RTX51是其自带的运行于8051系列单片机上的小型多任务实时操作系统,可用来设计具有实时性要求的多任务软件。 RTx51有2个版本:RTX51 Tiny和RTX51 Full。RTX51 Tiny是RTX51 Full的子集。RTX51 Tiny自身仅占用900字节左右的程序存储空间,可以很容易地运行在没有外部扩展存储器的8051单片机系统上。
目前在8051系列单片机上使用多任务实时操作系统,绝大多数应用都选择了RTX51 Tiny。本文就其在实际应用中的一些概念和具体问题进行了探讨。RTX51Tiny内核的版本为1.06,C51编译器版本为7.50。
1 RTX51 Tiny中有没有主程序的问题
一般来说,C语言中主程序就是指main()函数。参考文献[3]称RTX51 Tiny没有主程序,其实这是一种误解。实际上RTX51 Tiny的主程序是以汇编代码的形式位于Rtx51tny.A51文件中,在程序的最后:
在通常的应用中,一般都是将RTX51 Tiny内核做成lib文件,使用的时候直接调用相应的系统函数即可,在应用程序中没有体现,用户也无需关心。这造成了一部分用户的误解,以为RTX51没有main()函数。
另外,参考文献[4]提到,使用RTX51 Timy时用户程序中不需要包含main()函数,它会自动从任务0开始运行;如果用户程序中包含main()函数,则需要利用os_cre- ate_task()函数来启动RTX51实时操作系统。这段话前一部分是正确的,前文也对此做了解释。但后一部分则值得商榷。在RTX51操作系统中,是存在main()函数的,只不过存在于库文件RTX51tny.lib之中,用户的应用程序中不能再包含main()函数。任务0为应用程序的入口,所有其他任务都在任务0中创建。
2 存储空间占用
RTX51tiny操作系统小巧精悍,能极大地提高程序的可读性及可维护性,但也占用了一定的存储空间。这是一种以空间换取性能的办法。由于 RTX51操作系统占用了存储空间,如果不外扩存储器,则至少需要8052系列以上的单片机。在Keil自带的帮助文件GS51.PDF中,对比做了详细的介绍。其中有关存储空间方面的信息是:RAM需求为7字节DATA,外加每个任务占用3字节IDATA空间;代码量(即ROM)约900字节。
3 关于使用os_wait()函数定时的问题
RTX51 Tiny内核中,TIMESHARING的默认值为5,以外部时钟振荡器频率为12 MHz计算,任务轮转时间为50 ms。如果想定时1个30 ms的时间间隔,在任务比较重时,使用os_wait(K_TMO,3,0)将得不到准确的结果。因为别的任务的执行时间已经占据了1个任务的轮转时间 50 ms,超出了20 ms。如果任务比较多,同时任务的负担都比较重,相应的误差时间会更大。
RTX51 Tiny使用os_wait()函数作定时,只有当系统任务较轻时,使用os_wait(K_IVL,count,0)和 os_wait(K_TMO,count,0)才能达到一致的效果;而在任务较重时,使用这2个函数所得到的结果会有很大差别。参考文献[5]对此做了详细介绍,此处只作简单补充。
事实上,用户程序的运行是阵发性的,在一段时间内任务会比较繁忙,而在另一段时间可能会处于空闲状态。如果使用 os_wait(K_TMO,count,0)函数进行定时,则在不同的时间段会得到不同的结果。所以,要实现较为精确和稳定的定时,最好还是使用 os_wait(K_IVL,count,O)函数,而不是os_wait(K_TMO,count,O)。除非延时时间很长,如超过了所有任务的轮转时间总和,os_wait(K_IVL,count,O)和os_wait(K_TM0,count,O)的延时效果才会相同。
4 INT_CLOCK的设置与延时计算
RTX5 Tiny中与延时相关的2个参数为INT_CLOCK和TIMESHARING。先来看Rtx5ltny.A51源程序中的一段:
从上面的程序段可以看出,RTX51 Tiny内核使用Timer0作为硬件定时器,Timer0工作在方式1(16位计数方式)。因此,如果想增加定时器溢出时间,可以修改INl_CLOCK的定义。但不能无限制地增大,最大只能到216一1,即65 535。如果单片机采用12 MHz的晶振,则每次定时器溢出的最长时间为65.535ms。如果INT_CLOCK的定义值超过了这个数据,并不能达到预期的结果。例如,把 INT_CLOCK定义为100 000(Oxl86AOH),那么实际上INT_CLOCK为34 464(Ox86AOH)。本来是想定时100 ms,实际上得到的却是34.4 ms。因此,在设置具体延时时间时必须仔细计算。
系统的任务轮转时间等于每次定时器溢出时间与TIMESHARING的乘积。因此,要将系统的任务轮转时间设置为特殊的时长,可以通过INT_CLOCK与TIME-SHARING两个参数的不同组合来实现。不过在一般的应用当中,都是采用其系统的默认值,无须修改。
5 修改内核配置的基本过程
RTX51TNY.A51为RTX51 Tiny的核心程序,包括所有的函数定义,不需要改动。通常改动的是配置程序CONF_TNY.A51,主要内容如下。
INT_REGBANK EQU 1:定时器中断时使用的寄存器组默认值是寄存器组1,一般无需改动。
INT_CLOCK EQU 10000:硬件定时器零TimerO的溢出时间,即1个滴答(tick)的时间长度。默认值是10 000个机器周期。对于传统的MCS51单片机来说,1个机器周期为12个时钟周期。如果采用12 MHz的晶振,那么每个机器周期将为lμs,1个滴答的时长为10 ms。
TIMESHARING EQU5:定义时间片轮转(round-robin timeout)时间,默认值为5个滴答(1个滴答为Tim—erO的1次溢出)。如果INT_CLOCK为10 000,时钟频率为12 MHz,则1个时间片的轮转时间为50 ms,即每个任务每次最大可获得的执行时间为50 ms。如果TIME-SHARING定义为O,则禁止时间片轮转。
RAMTOP EQU 0FFH:定义CPU堆栈可使用的最高RAM地址,默认值为地址OFFH(256-1)。FREE_STACK EQU 20:配置堆栈大小为20字节,默认值为20(经常需要改动)。用户可根据自己的实际需要进行修改,一般情况下需要配置或修改的内容主要有 INT_CLOCK、TIMESHAR-ING、FREE_STACK。
6 其他需要注意的问题
①堆栈的大小要设置得合适,太大浪费资源,太小又会出现堆栈错误。在系统运行中,有时会发现程序总在某一处死循环,而从逻辑上却常常分析不出问题之所在,很有可能是堆栈溢出。在conf_tny.a51中有个非常重要的宏STACK_ERROR,其源程序如下:
通过仿真发现,程序会在此处死循环。
(Conf_tny.a51)FREE_STACK EQU 20:配置堆栈大小为20字节,默认值为20。选择合适的堆栈大小,即设置合适的FREE_STACK值,可达到最佳效果。
②同堆栈一样,轮转时间片的长度也不宜设置得过大或过小。设置得过大,则一些持续时间较短的事件无法响应。如果轮转时间设置得过小,则CPU的很大一部分功能被消耗在任务切换上了;如果任务多,处理时间长,无疑会无形中增加系统的负担。需要根据具体的需要权衡。 |
|