我们从2011年坚守至今,只想做存粹的技术论坛。  由于网站在外面,点击附件后要很长世间才弹出下载,请耐心等待,勿重复点击不要用Edge和IE浏览器下载,否则提示不安全下载不了

 找回密码
 立即注册
搜索
查看: 781|回复: 0

芯片内多层PCB布线高速化-

[复制链接]

该用户从未签到

1万

主题

1424

回帖

3万

积分

管理员

积分
32032

社区居民最爱沙发原创达人社区明星终身成就奖优秀斑竹奖宣传大使奖特殊贡献奖

QQ
发表于 2013-3-29 00:25:17 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区

您需要 登录 才可以下载或查看,没有账号?立即注册

×
芯片内多层PCB布线高速化
  从生产与<A href="http://www.greatpcba.com"&gtCB设计</A>两个方面追求使用铜与低导电率膜,从而达到多层布线的高速化,已受到重视。迄今主要通过改善生产工艺来实现高速化。今后,除了生产工艺外,PCB设计技巧也需改进。通过准确提取布线的寄生分量,尽量减少多余的PCB设计估计值,把布线本来具有的性能优势最大限度地发挥出来,就能实现芯片运行最快速化。
  通过相互削弱晶体管与布线的延迟来实现芯片的高速运行。但在0.25mm线宽之后,布线延迟将居于支配地位,芯片中布线的作用开始变得非常重要了,因此,在0.25mm之后对布线实现高速化的尝试特别活跃。但是,在0.25~0.18mm,通过改进生产工艺来实现高速化仍是主体。在PCB设计方面并无大的变化。
  生产工艺改进的典型例子是把过去的铝改为低电阻的铜,从而降低了布线电阻。在0.25mm上IBM公司抢占了先机,对0.18mm大多数芯片制造商都一齐采用了。在这一时期,层间绝缘膜采用了SiOF,介电常数比为3.5左右,比之过去的SiO2有所降低,但降低布线电容的效果却不大。不过,由于材料组成与SiO2相近,成膜及加工的工艺技术稍作改动即可,故许多芯片制造商都已采用。
  PCB设计方法无需大改动有如下理由。在目前,生产工艺所改善的是布线电阻和布线电容,这些从使用铝布线及SiO2层间绝缘膜之后,PCB设计时都做了准确的预测,因此,在0.25~0.18mm时代,也可预测符合材料铜的布线电阻和布线电容,从而可以充分发挥布线应有的性能。
  然而,在0.13mm线宽时,这种状况就完全不同,当所需要的芯片的工作频率超过GHZ,仅靠改善生产工艺实现高速化就不够了,还需要改善PCB设计技巧。
  在0.13mm以后也要继续改善生产工艺以实现高速化,具体地说,层间绝缘膜要用介电常数比低于3的材料,通过这样低介电常数膜与铜布线相结合进一步降低布线延迟。之后与0.1mm、0.07mm的细微化相适应,还要继续降低层间绝缘膜的介电常数比。
  在PCB设计方面,不做大改动已不可行,而要积极采取对策。准确预测过去忽略了的布线电感,减少多余的PCB设计估计值,方能最大限度发挥布线固有的特性,从而把布线延迟降低到极限。
  0.13mm开始批量生产的时间是2001年。在此之前有关介电常数膜与铜布线的各种难题必须完全解决,因此加速生产设备、元器件及材料的研发是当务之急。
  当前,面向0.13mm的低介电常数层间绝缘膜的后备者有:介电常数比约2.2的多孔结构的SiO2;2.6~2.8的MPS(Methyl-PolySiloxane)及PAE(Poly Arylene Ether);2.8~3.1的HSQ(Hydrogen Silsesquioxane)等。这些低介电常数层间绝缘膜有四个难题①提高机械强度;②提高可加工性;③提高粘合性;④降低吸水性。
  提高机械强度是目前最大难题之一,当未找到有希望的解决办法。目前低介电常数膜的机械强度比以往使用teOS及等离子体CVD的SiO2膜低1~2个数量级。因此,用CMP(化学机械研磨)在层间绝缘膜上形成划痕及腐蚀,如要在多层布线的上层部分形成需要的1~2mm的厚膜,便有出现裂缝的问题。今后,必须开发出机械强度高的低介电常数材料。
  要提高加工性必须提高对光刻胶的选择比及O2等离子剥胶性能。对光刻胶的选择比即使值较好的低介电常数材料也低于2。O2等离子剥胶性能除部分材料外都极低。对此,已开发了无需对低介电常数膜加工的技术,即采用铝柱方法。由于事先在干法刻蚀形成的铝柱上形成低介电常数膜,故不对低介电常数膜进行加工就能形成通孔。
  提高粘合性尤其对有机系的PAE等是大课题。这类材料与金属材料的粘合强度比利用等离子CVD的SiO2约低1个数量级,在CMP加工时会出现脱开的问题。已经知道,与PAE相比,MPS和HSQ的粘合强度较高。
  降低吸水性已看到了解决问题的方向,因为眼下已有许多优良的材料。过去的低介电常数膜如置于空气中,在吸收了膜表面吸附的水分后,会有膜的介电常数比增大的问题。对此,在典型的有机系低介电常数材料MPS及PAE中,找出了吸水性非常低的材料。如把使用TEOS的等离子CVD的SiO2膜的吸水量定为100%,PAE则低到12%,MPS为40%。
  就铜布线来说,采用电镀能适应细微化到何种程度是个课题。对此,研究了分别使用二次处理工艺与一次处理工艺的方法,即0.1mm后在最细的下层部分,0.07mm后的中层部分引入一次处理工艺,而二次处理工艺仅在上层部分采用。
  二次处理工艺必须在通孔与布线沟合在一起后的高纵横比内,形成屏蔽金属和籽晶层。如果进一步细微化,只形成屏蔽金属和籽晶层的布线沟几乎被填平,再埋入铜就非常难了。
  另一方面,一次处理工艺只埋入布线沟,纵横比小,即使细微化,埋入铜的余地也很大。因此,在形成屏蔽金属及籽晶层后,用以往电镀埋入铜的技术也完全能适合。
  如果非要用二次处理工艺的话,那就必须不用电镀,而使用不要籽晶层的CVD。不过,目前用CVD形成的铜膜质低,且成膜成本也高。要是不能解决这个问题,采用CVD的二次处理工艺就很难实现。
  对0.07mm线宽来说,要实现LSI的GHz工作必须从根本上改变多层布线概念。东芝公司除通过模拟确定按过去的布线结构不可能达到0.07mm所要求的工作频率外,还作为解决的一种方案提出了新的多层布线的概念。
  0.07mm线宽的微处理器所需要的工作频率达2.5GHz,这是1998版InternatiONal Technology Roadmap For Semiconductors (ITRS)的值。此时,晶体管的集成度为8400万个/cm2,功耗170W,芯片面积是620mm2。东芝以0.07mm线宽为前提进行模拟,以晶体管的集成度及功耗为PCB设计上的制约条件,并以布线电阻及布线电容为生产上的制约条件,以最少的布线层数求得最大的工作频率。其结果证明,按过去的多层布线只能达到1.5GHz。该值是把介电常数比为1的层间绝缘膜与铜布线相结合、使用8层布线,此即当前能设想出的性能最高的生产技术能得到的结果。
  针对这样的屏障,该公司提出了在0.07mm达到2.5GHz的新的多层布线概念。其想法是把芯片内部分割为适当门规模的IP,对上层部分长距离布线的线宽、间隔、厚度实施随细微化而加大的“逆向比例缩放”。芯片内部分成IP后减少各自的门数,起到提高各个IP的工作频率的作用,因为降低门数,小电路能达到高的工作频率。为了使工作频率达到2.5GHz的高速度,最好把各IP的门数减少到1700万门以下。逆向比例缩放将对连接各IP间的长距离信号线的高速化发挥作用。这里,如按该公司PCB设计的逆向比例缩放定则,0.07mm多层布线的上层部分、线宽、间隔、厚度均为约10mm,如用过去的芯片制造工艺形成,则效率低且成本增高。因此,上层部分的长距离布线必须用不同于过去的工艺来制作。</td>
               
               
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

每日签到,有金币领取。


Copyright ©2011-2024 NTpcb.com All Right Reserved.  Powered by Discuz! (NTpcb)

本站信息均由会员发表,不代表NTpcb立场,如侵犯了您的权利请发帖投诉

( 闽ICP备2024076463号-1 ) 论坛技术支持QQ群171867948 ,论坛问题,充值问题请联系QQ1308068381

平平安安
TOP
快速回复 返回顶部 返回列表