|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区
您需要 登录 才可以下载或查看,没有账号?立即注册
×
基于2SD106的IGBT驱动PCB电路设计与应用
引言 <BR> IGBT驱动PCB电路的关键是驱动保护<A href="http://www.greatpcba.com">CB</A>电路设计,良好的驱动PCB电路必须保证IGBT的开关损耗量尽可能小。在IGBT承受短路电流时,如能实现可靠关断,则可以保护IGBT。
由于大功率的IGBT模块在开通关断时,需要瞬间大电流。本系统选择2SD106AI-17作为驱动模块,该模块驱动能力强,驱动峰值电流达到6A,隔离能力强,具有完善灵活的保护PCB电路。
本文设计的驱动PCB电路应用在混合动力汽车的异步电机的逆变器系统中,三相全桥逆变器选用IGBT型号为UPEC的FF400R12KE3,考虑到开关频率高和逆变器空间等因素的限制,最终采用CONCEPT公司的驱动模块2SD106AI-17。在实际运行中,该模块具有较好的驱动能力和较强的可靠性。
2SD106AI-17驱动模块简介
2SD106AI-17是瑞士CONCEPT公司生产的SCALE系列驱动模块之一,是驱动大功率IGBT和MOSFET专用模块,内部集成了短路和过流保护PCB电路、欠压监测PCB电路。该SCALE驱动板采用ASIC设计,仅用15V电源驱动,开关频率可大于100kHz,具有高可靠性和使用寿命长等特性。它有两个驱动输出通道,可以选择两种不同的工作模式,适合两个单管和半桥驱动,曾获得1998年度ABB优秀电力电子项目称号。
2SD106AI-17跟其他型号的SCALE系列驱动模块的内部结构差不多,都是由电子接口LDI 、智能栅极驱动IGD和15V D C/DC电源组成,其方框图如图1所示。当外部输入PWM信号后,由LDI进行编码处理,为保证信号不受外界条件的干扰,处理过的信号在进入IGD前需用高频隔离变压器进行电气隔离。从隔离变压器另一侧接收到的信号首先在IGD单元进行解码,并把解码后的PWM信号进行放大(±15V/±15A),以驱动外接大功率IGBT。当智能门极驱动单元IGD内的保护PCB电路检测到IGBT发生过流和短路故障时 ,由封锁时间逻辑PCB电路和状态确认PCB电路产生相应的响应时间和封锁时间,并把此时的状态信号进行编码送到逻辑控制单元LDI。LDI单元对传送来的IGBT工作状态信号进行解码处理,使之在控制回路中得以处理 。为防止2SD106AI-17的两路输出驱动信号相互干扰,由DC/DC转换器提供彼此隔离的电源供电。同时,还提供了电源监测PCB电路,当控制电源电压低于10~11V时,模块会自动把IGBT封锁,同时产生一个错误信号。
驱动PCB电路设计
2SD106AI-17的工作模式选择
2SD106AI-17有两种工作模式,分别是直接模式和半桥模式。前者是两路IGBT独立工作,可用于已经产生死区时间的PWM信号的驱动;后者是驱动板上自动产生死区时间,两路IGBT协调工作。在这个PCB电路中,把Mod端接地,使SCALE处于半桥模式,InA为PWM输入端,InB为使能信号。当InB输入为低电平时,两路IGBT同时关断。死区时间是由硬件产生的,死区时间的选择就是选择RC网络的值。在综合考虑之后,选择死区时间是2.1μS,选择的电阻和电容是22kΩ和22pF。
驱动电阻的选择
在驱动IGBT时,必须选择合适的驱动电阻。阻值越小,上升和下降时间就越短,但是di/dt随之变大,由于杂散电感的存在,使得IGBT承受比较高的尖锋电压;阻值越大,上升和下降时间就越长,有可能无法使IGBT按时开通和关断。故选择驱动电阻阻值时要综合考虑这两方面因素,同时也要考虑2SD106AI-17的最大驱动电流(6A),驱动电阻的最小值可以按照这个公式:
R_{2}=ΔU/I_{OP} (1) <BR>由电气特性可知,ΔU=30V(门极驱动电压15V ),根据公式(1),取驱动电阻为5.1Ω。
参考电阻的选取
参考电阻就是2SD106AI-17连接到IGBT的发射极(E端)的电阻,确定IGBT保护关断阀值。导通后,当C端上的电压超过参考电阻上的电压时,驱动模块就会启动保护功能。参考电阻的计算公式可以按照公式(2)计算得到。
R_{th}=V_{th}/150μA (2)
在 不同的系统中,IGBT的过电流保护限值是不同的。FF400R12KE3的保护电流实际上相当于短路电流,此时瞬时电流值非常大,对IGBT的损伤也非常大,按照正常做法,必须有可靠的过流保护。由公式(2)可以计算出一个参考电阻,其中V th =3.2V,则R th =22kΩ。
根 据上述驱动PCB电路设计,用2SD106AI-17模块来驱动FF400R12KE3。需要注意的是驱动PCB电路应尽可能靠近IGBT安装,同时IGBT与驱动PCB电路应 采用双绞线连接,参考电阻、参考电 位必须尽可能地 接近IGBT模块的E端。
实验问题与分析
基于以上的驱动PCB电路,应用于本实验室自主研制的混合动力汽车逆变器上,将其进行具体装车试验。
系统选用FF400R12KE3为逆变器的开关器件,开关频率为6.6kHz,采用SVPWM调制方式产生PWM波形;采用基于转子磁场定向的矢量控 制作为电机的控制策略,核心控制单元为定点DSP-TMS320LF2407A;相电流信号i s通过D/A输出,用示波器进行观测;直流母线电压为350V;负载由电涡流测功机进行模拟。在做额定负载实验中,逆变器输出170A的电流 很正常。在实际车辆运行中,发现逆变器没有电流输出。
实验系统所用电机具体参数如下:
额定功率:50kW
额定频率:200Hz
额定电压:240V
额定电流:167A
额定转矩:160N.m
额定转速:3000r/min
联结方式:Y
最高转速:6000r/min
问题排查过程:
1.利用外部电源单独给逆变器供电,发现逆变器工作正常,排除了逆变器出现问题的可能。
2 .在问题状态下,用示波器查DSP主控板有没有PWM波形输出。发现有波形输出,基本排除了主控板的因素。
3.在问题状态下,测量车辆24V供电系统,发现电池的电压在启动瞬间降到10V左右,同时又观察别的系统单元,发现这时也都停止工作。可知问题基本是由供电电源不稳引起的。
4.在驱动板的电源输入端增加两个大电容,问题不再出现。
问题原因:
在发动机启动的时候,点火系统需要一个大电流,导致车上的24V系统电压下降很严重,使得2SD106AI-17的输入电源低于其自身的保护电压(11V),从而使2SD106AI-17产生了复位。因此,为了适应车上的工作状况, 必须在2SD106AI-17的电源侧增加电 容,使驱动模块在启动时期内不复位。
在设计和使用2SD106AI时,要注意以下事项:1、必须计算驱动需要的功率,选择合适的供电电源,特别是在车上时要用宽输入的电源;2、安装时请不要用手随便触摸驱动模块,防止静电损害模块;3、驱动电阻要靠近IGBT的门极。
结束语
本文分析了2SD106AI-17的工作原理,设计了基于2SD106AI-17的IGBT驱动PCB电路,并将其应用在具体混合动力汽车的逆变器驱动系统上。实验表明,基于2SD106AI-17的驱动板可靠性非常好,非常适用于车上的环境。</td>
|
|